Skip to main content
Log in

Behavior of oxygen-containing groups in grass lignin during dissolution in basic ionic liquids

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Three basic ionic liquids(BILs), 1-amyl-3methylimidazolium acetate (C5mim][Ac]), 1-butyl-3methylimidazolium acetate ([Bmim][Ac]) and 1-ethyl-3-methylimidazolium acetate ([Emim][Ac]), have been applied for the dissolution of lignin from wheat grass under microwave conditions with the decreased alkalinity order of [Emim][Ac]>[Bmim][Ac]>[C5mim][Ac]. Also the behavior of oxygen-containing groups within lignin in the dissolution of ionic liquids was investigated by elemental analysis, analytical pyrolysis, 2D-HSQC spectra, GPC, TG and FTIR analysis. Results revealed that [Emim][Ac] showed a higher dissolution capacity (≥ 330 g/kg) at 80°C within 30 min under microwave condition with higher alkalinity. In the process of dissolution, ionic liquids mainly attack the oxygen-containing groups and the aryl ether bond in the lignin side chain. The methoxy content reduction, the cleavage of β-O-4’ linkages and the degradation of β–β linkages obviously happened in the dissolution process, resulting in the decrease of the molecular weights. Ionic liquids treatment selectively degraded the G-type lignin fragments with demethoxylation and dehydration reactions occurring during dissolution. The results also indicate that the shorter the alkyl chain of the ionic liquids, the stronger the alkalinity is, the more destructive the oxygen-containing groups in the lignin side chain.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achinivu EC, Howard RM, Li G, Gracz H, Henderson WA (2014) Lignin extraction from biomass with protic ionic liquids. Green Chem 16(3):1114–1119

    Article  CAS  Google Scholar 

  • An YX, Li N, Wu H, Lou WY, Zong MH (2015) Changes in the structure and the thermal properties of kraft lignin during its dissolution in cholinium ionic liquids. ACS Sustain Chem Eng 3(11):2951–2958

    Article  CAS  Google Scholar 

  • Azadi P, Inderwildi OR, Farnood R, King DA (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sustain Energy Rev 21(5):506–523

    Article  CAS  Google Scholar 

  • Billa E, Koukios EG, Monties B (1998) Investigation of lignins structure in cereal crops by chemical degradation methods. Polym Degrad Stab 59(1–3):71–75

    Article  CAS  Google Scholar 

  • Chatel G, Rogers RD (2014) Review: oxidation of lignin using ionic liquids—an innovative strategy to produce renewable chemicals. ACS Sustain Chem Eng 2(3):322–339

    Article  CAS  Google Scholar 

  • Dibble DC, Li CL, Sun L, George A, Cheng A, Çetinkol ÖP, Benke P, Holmes BM, Singh S, Simmons V (2011) A facile method for the recovery of ionic liquid and lignin from biomass pretreatment. Green Chem 13(11):3255–3264

    Article  CAS  Google Scholar 

  • Erdocia X, Prado R, Corcuera MÁ, Labidi J (2014) Effect of different organosolv treatments on the structure and properties of olive tree pruning lignin. J Ind Eng Chem 20(3):1103–1108

    Article  CAS  Google Scholar 

  • Fernandes DM, Hechenleitner AAW, Pineda EAG (2006) Kinetic study of the thermal decomposition of poly(vinyl alcohol)/kraft lignin derivative blends. Thermochim Acta 441(1):101–109

    Article  CAS  Google Scholar 

  • Fu D, Mazza G, Tamaki Y (2010) Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues. J Agric Food Chem 58(5):2915–2922

    Article  CAS  PubMed  Google Scholar 

  • George A, Tran K, Morgan TJ, Benke PI, Berrueco C, Lorente E, Wu BC, Keasling JD, Simmons BA, Holmes BM (2011) The effect of ionic liquid cation and anion combinations on the macromolecular structure of lignins. Green Chem 13(12):3375–3385

    Article  CAS  Google Scholar 

  • Han DH, Wei XY, Li JH, Chen JC, Cui LH, Wang YH, Ou CY (2013) An orthogonal experiment of bagasse cellulose dissolution in ionic liquid by microwave heating. Adv Mater Res 602–604:676–680

    Google Scholar 

  • Hou Y, Liu C, Xu J, Li Y, Hu S (2016) Application of alkaline ionic liquids in the pretreatment process of eucalyptus kraft pulping. BioResources 11(4):9036–9046

    Article  CAS  Google Scholar 

  • Kim JY, Shin EJ, Eom IY, Won K, Yong HK, Choi D, Choi IG, Choi JW (2011) Structural features of lignin macromolecules extracted with ionic liquid from poplar wood. Biores Technol 102(19):9020–9025

    Article  CAS  Google Scholar 

  • Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2010) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102(5):1368–1376

    Article  CAS  Google Scholar 

  • Liu C, Li Y, Hou Y (2018) Basicity characterization of imidazolyl ionic liquids and their application for biomass dissolution. Int J Chem Eng 2018(2):1–8

    Google Scholar 

  • Mäki-Arvela P, Anugwom I, Virtanen P, Sjöholm R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind Crops Prod 32(3):175–201

    Article  CAS  Google Scholar 

  • Mu L, Shi Y, Chen L, Ji T, Yuan R, Wang H, Zhu J (2015) [N-Methyl-2-pyrrolidone][C1-C4 carboxylic acid]: a novel solvent system with exceptional lignin solubility. Chem Commun 51(70):13554–13557

    Article  CAS  Google Scholar 

  • Pinkert A, Goeke DF, Marsh KN, Pang SS (2011) Extracting wood lignin without dissolving or degrading cellulose: investigations on the use of food additive-derived ionic liquids. Green Chem 13(13):3124–3136

    Article  CAS  Google Scholar 

  • Prado R, Brandt A, Erdocia X, Hallett J, Labidi J, Welton T (2016) Lignin oxidation and depolymerisation in ionic liquids. Green Chem 18(3):834–841

    Article  CAS  Google Scholar 

  • Pu Y, Jiang N, Ragauskas AJ (2007) Ionic liquid as a green solvent for lignin. J Wood Chem Technol 27(1):23–33

    Article  CAS  Google Scholar 

  • Rashid T, Chongfai K, Regupathi I, Murugesan T (2016) Dissolution of kraft lignin using protic ionic liquids and characterization. Ind Crops Prod 84:284–293

    Article  CAS  Google Scholar 

  • Río JCD, Rencoret J, Marques G, Li J, Gellerstedt G, Jiménezbarbero J, Martínez ÁT, Gutiérrez A (2009) Structural characterization of the lignin from jute (corchorus capsularis) fibers. J Agric Food Chem 57(21):10271–10281

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara A, Sano Y (2001) Chemistry of lignin. In: Hon DNS, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker, New York, pp 109–174

    Google Scholar 

  • Santos PSBD, Erdocia X, Gatto DA, Labidi J (2014) Characterisation of kraft lignin separated by gradient acid precipitation. Ind Crops Prod 55(55):149–154

    Article  CAS  Google Scholar 

  • Sette M, Wechselberger R, Crestini C (2011) Elucidation of lignin structure by quantitative 2D NMR. Chemistry 17(34):9529–9535

    Article  CAS  PubMed  Google Scholar 

  • Strassberger Z, Prinsen P, Klis FVD, Es DSV, Tanase S, Rothenberg G (2014) Green chemistry lignin solubilisation and gentle fractionation in liquid ammonia. Green Chem 17(1):325–334

    Article  Google Scholar 

  • Tenhaeff WE, Rios O, More K, Mcguire MA (2013) Highly robust lithium ion battery anodes from lignin: an abundant, renewable, and low-cost material. Adv Funct Mater 24(1):86–94

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2(5):1072–1092

    Article  CAS  Google Scholar 

  • Upton BM, Kasko AM (2015) Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem Rev 116(4):2275–2306

    Article  PubMed  CAS  Google Scholar 

  • Varanasi P, Singh P, Arora R, Adams PD, Auer M, Simmons BA, Singh S (2012) Understanding changes in lignin of Panicum virgatum and Eucalyptus globulus as a function of ionic liquid pretreatment. Biores Technol 126(6):156–161

    Article  CAS  Google Scholar 

  • Wang H, Maxim ML, Gurau G, Rogers RD (2013) Microwave-assisted dissolution and delignification of wood in 1-ethyl-3-methylimidazolium acetate. Biores Technol 136(3):739–742

    Article  CAS  Google Scholar 

  • Welton T (2011) Ionic liquids in green chemistry. Green Chem 13(2):225

    Article  CAS  Google Scholar 

  • Wen JL, Sun SL, Xue BL, Sun RC (2013a) Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials 6(1):359–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen JL, Yuan TQ, Sun SL, Xu F, Sun RC (2013b) Understanding the chemical transformations of lignin during ionic liquid pretreatment. Green Chem 16(1):181–190

    Article  Google Scholar 

  • Wu M, Liu JK, Yan ZY, Wang B, Zhang XM, Xu F, Sun RC (2016) Efficient recovery and structural characterization of lignin from cotton stalk based on a biorefinery process using a γ-valerolactone/water system. Rsc Adv 6(8):6196–6204

    Article  CAS  Google Scholar 

  • Yang H, Yan R, Chen H, Dong HL, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12):1781–1788

    Article  CAS  Google Scholar 

  • Yuan TQ, Sun SN, Xu F, Sun RC (2011a) Characterization of lignin structures and lignin-carbohydrate complex (LCC) linkages by quantitative 13C and 2D HSQC NMR spectroscopy. J Agric Food Chem 59(19):10604–10614

    Article  CAS  PubMed  Google Scholar 

  • Yuan TQ, Sun SN, Xu F, Sun RC (2011b) Structural characterization of lignin from triploid of populus tomentosa carr. J Agric Food Chem 59(12):6605–6615

    Article  CAS  PubMed  Google Scholar 

  • Zhang YHP, Ding SY, Mielenz JR, Cui JB, Elander RT, Laser M, Himmel ME, Mcmillan JR, Lynd LR (2010) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97(2):214–223

    Article  CAS  Google Scholar 

  • Zhang H, Wang X, Liang Y (2015) Preparation and characterization of a lithium-ion battery separator from cellulose nanofibers. Heliyon 1(2):e00032

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, He H, Dong K, Fan M, Zhang S (2017) A DFT study on lignin dissolution in imidazolium-based ionic liquids. Rsc Advances 7(21):12670–12681

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support of the National key R & D project of China (Grant number 2017YFB0307901) and National Natural Science Foundation of China (Grant number 21476091). The authors also appreciate the financial support from the Science and Technology Planning Project of Guangdong Province (Grant number 2015A020215009) and the Science and Technology Planning Project of FoShan in Guangdong Province (Grant number 2015AG10011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Hou.

Ethics declarations

Conflicts of interest

There are no conflicts to declare

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Li, Y. & Hou, Y. Behavior of oxygen-containing groups in grass lignin during dissolution in basic ionic liquids. Cellulose 26, 737–749 (2019). https://doi.org/10.1007/s10570-018-2097-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-2097-4

Keywords

Navigation