Skip to main content
Log in

Multi-functional regenerated cellulose fibers decorated with plasmonic Au nanoparticles for colorimetry and SERS assays

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Multi-functional cellulose fiber-Au composites were fabricated through a simple and cost-effective procedure by decorating regenerated cellulose fibers with Au nanoparticles. The cellulose fibers were regenerated from waste paper through the Ioncell-F process, an environmental friendly approach. After grafting positive charge, the surface of the cellulose fibers were decorated with citrate-stabilized plasmonic Au nanoparticles (NPs). X-ray photoelectron spectroscopy, scanning electron microscopy, X-ray diffraction, and optical images were used to characterize the regenerated cellulose fibers and fiber-Au NP composites. The fiber-Au composites exhibited different colors as the localized surface plasmon resonance property of Au NPs, which enables visual sensing of the water content in the fiber-Au composites through a colorimetric method. Furthermore, the regenerated cellulose fiber-Au composite was used as an enhanced substrate for the sensing of malachite green via surface-enhanced Raman scattering, in which the limit of detection was lower than 10 ppb. The multi-functional cellulose fibers are potentially suitable for the detection of toxins and the monitoring of water quality.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Björquist S, Aronsson J, Henriksson G, Persson A (2017) Textile qualities of regenerated cellulose fibers from cotton waste pulp. Text Res J. https://doi.org/10.1177/0040517517723021

    Article  Google Scholar 

  • Castellanos L, Blanco-Tirado C, Hinestroza J, Combariza M (2012) In situ synthesis of gold nanoparticles using fique natural fibers as template. Cellulose 19:1933–1943

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohyd Polym 83:1804–1811

    Article  CAS  Google Scholar 

  • Coppedè N, Tarabella G, Villani M, Calestani D, Iannotta S, Zappettini A (2014) Human stress monitoring through an organic cotton-fiber biosensor. J Mater Chem B 2:5620–5626

    Article  Google Scholar 

  • European Environment Agency (2013) Managing municipal solid waste: a review of achievements in 32 European countries, vol 2. European Environment Agency, Copenhagen

    Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Fu WL, Zhen SJ, Huang CZ (2013) One-pot green synthesis of graphene oxide/gold nanocomposites as SERS substrates for malachite green detection. Analyst 138:3075–3081

    Article  CAS  PubMed  Google Scholar 

  • Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862

    Article  CAS  PubMed  Google Scholar 

  • Gong Z, Du H, Cheng F, Wang C, Wang C, Fan M (2014) Fabrication of SERS swab for direct detection of trace explosives in fingerprints. ACS Appl Mater Interfaces 6:21931–21937

    Article  CAS  PubMed  Google Scholar 

  • Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67:735–743

    Article  CAS  Google Scholar 

  • Guo J et al (2017) Complexes of magnetic nanoparticles with cellulose nanocrystals as regenerable, highly efficient, and selective platform for protein separation. Biomacromol 18:898–905

    Article  CAS  Google Scholar 

  • Hauru LK, Hummel M, Nieminen K, Michud A, Sixta H (2016) Cellulose regeneration and spinnability from ionic liquids. Soft Matter 12:1487–1495

    Article  CAS  PubMed  Google Scholar 

  • Hauser PJ, Tabba AH (2001) Improving the environmental and economic aspects of cotton dyeing using a cationised cotton. Color Technol 117:282–288

    Article  CAS  Google Scholar 

  • Hou A, Zhang C, Wang Y (2012) Preparation and UV-protective properties of functional cellulose fabrics based on reactive azobenzene Schiff base derivative. Carbohydr Polym 87:284–288

    Article  CAS  Google Scholar 

  • Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2:107–118

    Article  CAS  Google Scholar 

  • Jin H et al (2011) Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. Langmuir 27:1930–1934

    Article  CAS  PubMed  Google Scholar 

  • Jin E, Guo J, Yang F, Zhu Y, Song J, Jin Y, Rojas OJ (2016) On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II. Carbohyd Polym 143:327–335

    Article  CAS  Google Scholar 

  • Kong X et al (2017) Detecting explosive molecules from nanoliter solution: a new paradigm of SERS sensing on hydrophilic photonic crystal biosilica. Biosens Bioelectron 88:63–70

    Article  CAS  PubMed  Google Scholar 

  • Kong X, Yu Q, Li E, Wang R, Liu Q, Wang AX (2018) Diatomite photonic crystals for facile on-chip chromatography and sensing of harmful ingredients from food. Materials 11:539

    Article  PubMed Central  Google Scholar 

  • Lee CH, Hankus ME, Tian L, Pellegrino PM, Singamaneni S (2011) Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures. Anal Chem 83:8953–8958

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Huang Y, Lai K, Rasco BA, Fan Y (2016) Surface-enhanced Raman spectroscopy coupled with gold nanoparticles for rapid detection of phosmet and thiabendazole residues in apples. Food Control 68:229–235

    Article  CAS  Google Scholar 

  • Ma Y, Hummel M, Määttänen M, Särkilahti A, Harlin A, Sixta H (2016) Upcycling of waste paper and cardboard to textiles. Green Chem 18:858–866

    Article  CAS  Google Scholar 

  • Marques PA, Nogueira HI, Pinto RJ, Neto CP, Trindade T (2008) Silver-bacterial cellulosic sponges as active SERS substrates. J Raman Spectrosc 39:439–443

    Article  CAS  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  Google Scholar 

  • Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  CAS  PubMed  Google Scholar 

  • Orelma H, L-s Johansson, Filpponen I, Rojas OJ, Laine J (2012) Generic method for attaching biomolecules via avidin–biotin complexes immobilized on films of regenerated and nanofibrillar cellulose. Biomacromol 13:2802–2810

    Article  CAS  Google Scholar 

  • Pinto RJ, Marques PA, Neto CP, Trindade T, Daina S, Sadocco P (2009) Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomater 5:2279–2289

    Article  CAS  PubMed  Google Scholar 

  • Pushparaj VL et al (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci 104:13574–13577

    Article  CAS  PubMed  Google Scholar 

  • Reddy N, Yang Y (2009) Properties and potential applications of natural cellulose fibers from the bark of cotton stalks. Bioresour Technol 100:3563–3569

    Article  CAS  PubMed  Google Scholar 

  • Renault C, Anderson MJ, Crooks RM (2014) Electrochemistry in hollow-channel paper analytical devices. J Am Chem Soc 136:4616–4623

    Article  CAS  PubMed  Google Scholar 

  • Sivakumar B et al (2013) Multifunctional carboxymethyl cellulose-based magnetic nanovector as a theragnostic system for folate receptor targeted chemotherapy, imaging, and hyperthermia against cancer. Langmuir 29:3453–3466

    Article  CAS  PubMed  Google Scholar 

  • Song J, Wang C, Hinestroza JP (2013) Electrostatic assembly of core-corona silica nanoparticles onto cotton fibers. Cellulose 20:1727–1736

    Article  CAS  Google Scholar 

  • Sun N et al (2008) Magnetite-embedded cellulose fibers prepared from ionic liquid. J Mater Chem 18:283–290

    Article  CAS  Google Scholar 

  • Tao Y et al (2011) Simultaneous determination of malachite green, gentian violet and their leuco-metabolites in shrimp and salmon by liquid chromatography–tandem mass spectrometry with accelerated solvent extraction and auto solid-phase clean-up. Food Control 22:1246–1252

    Article  CAS  Google Scholar 

  • Tungprapa S, Jangchud I, Supaphol P (2007) Release characteristics of four model drugs from drug-loaded electrospun cellulose acetate fiber mats. Polymer 48:5030–5041

    Article  CAS  Google Scholar 

  • Wang L, Dou H, Lou Z, Zhang T (2013) Encapsuled nanoreactors (Au@ SnO 2): a new sensing material for chemical sensors. Nanoscale 5:2686–2691

    Article  CAS  PubMed  Google Scholar 

  • Xiong Z, Chen X, Liou P, Lin M (2017) Development of nanofibrillated cellulose coated with gold nanoparticles for measurement of melamine by SERS. Cellulose 24:2801–2811

    Article  CAS  Google Scholar 

  • Zhang Y, Yu W, Pei L, Lai K, Rasco BA, Huang Y (2015) Rapid analysis of malachite green and leucomalachite green in fish muscles with surface-enhanced resonance Raman scattering. Food Chem 169:80–84

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Ali MM, Aguirre SD, Brook MA, Li Y (2008) Based bioassays using gold nanoparticle colorimetric probes. Anal Chem 80:8431–8437

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support from the talent scientific research Fund of LSHU (No. 2017XJJ-037), the United States National Institutes of Health under Grant No. 1R21DA0437131 and the Unites States Department of Agriculture under Grant No. 2017-67021-26606. The authors also thank Ms. Rita Hatakka for her kind help with the experimental work, and Dr. Mehedi Reza is thanked for his help with TEM and SEM imaging. We also thank Dr. Leena-Sisko Johansson for help with XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianming Kong or Alan X. Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q., Kong, X., Ma, Y. et al. Multi-functional regenerated cellulose fibers decorated with plasmonic Au nanoparticles for colorimetry and SERS assays. Cellulose 25, 6041–6053 (2018). https://doi.org/10.1007/s10570-018-1987-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1987-9

Keywords

Navigation