Skip to main content
Log in

Fabrication of functional magnetic cellulose nanocomposite membranes for controlled adsorption of protein

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose nanocomposite membranes with predesigned functions were prepared and evaluated as adsorbents for protein adsorption. Maghemite nanoparticles (MNP) with amino groups and carboxyl groups were obtained by modifying maghemite nanoparticles with glycine and sodium citrate, respectively. The functional maghemite nanoparticles were then dispersed into NaOH/urea aqueous solution for dissolving cellulose, and the magnetic membranes were constructed using a tape casting method. The modified MNP were evaluated by zeta potential and FTIR measurements. The developed cellulose nanocomposite membranes possess microporous structure with porosity higher than 88.3%. The introduction of MNP with carboxyl groups into the cellulose nanocomposite membranes could absorb the highest amount of protein at a pH of 4, and gradually decreased with the increase of pH from 4 to 6. However, cellulose nanocomposite membranes with introduced MNP with amino groups absorb the highest and lowest amount of protein at pH of 5 and 4, respectively. This study provides a green and simple method for the design of multifunctional cellulose nanocomposite membranes for controllable protein adsorption, and is expected to open new venues for biomolecule binding by choice of various nanofillers and pH of the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abedini R, Mousavi SM, Aminzadeh R (2011) A novel cellulose acetate (CA) membrane using TiO2 nanoparticles: preparation, characterization and permeation study. Desalination 277(1):40–45

    Article  CAS  Google Scholar 

  • Ali EH, El-Sawy NM, Hegazy ESA, Awadallah-F A (2011) Protein adsorption of radiation functionalized LDPE sheets. Polym Bull 67(9):1837–1848

    Article  Google Scholar 

  • Asthana A, Verma R, Singh AK, Susan MABH (2016) Glycine functionalized magnetic nanoparticle entrapped calcium alginate beads: a promising adsorbent for removal of Cu(II) ions. Chem Eng J 4(2):1985–1995

    CAS  Google Scholar 

  • Cai J, Liu Y, Zhang L (2006) Dilute solution properties of cellulose in LiOH/urea aqueous system. J Polym Sci Polym Phys 44(21):3093–3101

    Article  CAS  Google Scholar 

  • Cao Z, Zhi S, Luo X, Hao Z, Liu Y, Ning C, Xue Y, Yu F (2017) Citrate-modified maghemite enhanced binding of chitosan coating on cellulose porous membranes for potential application as wound dressing. Carbohydr Polym 166:320–328

    Article  CAS  Google Scholar 

  • Chang W, Chen H (2016) Physical properties of bacterial cellulose composites for wound dressings. Food Hydrocoll 53:75–83

    Article  CAS  Google Scholar 

  • Chekli L, Phuntsho S, Roy M, Lombi E, Donner E, Shon HK (2013) Assessing the aggregation behaviour of iron oxide nanoparticles under relevant environmental conditions using a multi-method approach. Water Res 47(13):4585–4599

    Article  CAS  Google Scholar 

  • Crupi V, Majolino D, Mele A, Melone L, Punta C, Rossi B, Toraldo F, Trotta F, Venuti V (2014) Direct evidence of gel–sol transition in cyclodextrin-based hydrogels as revealed by FTIR-ATR spectroscopy. Soft Matter 10(13):2320–2326

    Article  CAS  Google Scholar 

  • Dasgupta J, Chakraborty S, Sikder J, Kumar R, Pal D, Curcio S, Drioli E (2014) The effects of thermally stable titanium silicon oxide nanoparticles on structure and performance of cellulose acetate ultrafiltration membranes. Sep Purif Technol 133(Supplement C):55–68

    Article  CAS  Google Scholar 

  • E96 A (2010) Standard test methods for water vapor transmission of materials. ASTM International, West Conshohocken, PA

  • Feitoza NC, Gonçalves TD, Mesquita JJ, Menegucci JS, Santos MK, Chaker JA, Cunha RB, Medeiros AM, Rubim JC, Sousa MH (2014) Fabrication of glycine-functionalized maghemite nanoparticles for magnetic removal of copper from wastewater. J Hazard Mater 264(2):153–160

    Article  CAS  Google Scholar 

  • Fu F, Li L, Liu L, Cai J, Zhang Y, Zhou J, Zhang L (2015) Construction of cellulose based ZnO nanocomposite films with antibacterial properties through one-step coagulation. ACS Appl Mater Interfaces 7(4):2597–2606

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Okita Y, Isogai A (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95(9):1502–1508

    Article  CAS  Google Scholar 

  • Gong X, Wang Y, Chen L (2017) Enhanced emulsifying properties of wood-based cellulose nanocrystals as Pickering emulsion stabilizer. Carbohyd Polym 169:295–303

    Article  CAS  Google Scholar 

  • Handschuh-Wang S, Wang T, Druzhinin SI, Wesner D, Jiang X, Schonherr H (2016) Detailed study of BSA adsorption on micro- and nanocrystalline diamond/β-SiC composite gradient films by time-resolved fluorescence microscopy. Langmuir 33(3):802–813

    Article  Google Scholar 

  • Kruger NJ (2009) The bradford method for protein quantitation. In: Walker JM (ed) The protein protocols handbook. Humana Press, New York, pp 17–24

    Chapter  Google Scholar 

  • Kumar PT, Lakshmanan VK, Anilkumar TV, Ramya C, Reshmi P, Unnikrishnan AG, Nair SV, Jayakumar R (2012) Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation. Acs Appl Mater Inter 4(5):2618–2629

    Article  Google Scholar 

  • Lizundia E, Maceiras A, Vilas JL, Martins P, Lanceros-Mendez S (2017) Magnetic cellulose nanocrystal nanocomposites for the development of green functional materials. Carbohyd Polym 175(Supplement C):425–432

    Article  CAS  Google Scholar 

  • Luo X, Lei X, Cai N, Xie X, Xue Y, Yu F (2016a) Removal of heavy metal ions from water by magnetic cellulose-based beads with embedded chemically modified magnetite nanoparticles and activated carbon. ACS Sustain Chem Eng 4(7):3960–3969

    Article  CAS  Google Scholar 

  • Luo X, Zhang H, Cao Z, Cai N, Xue Y, Yu F (2016b) A simple route to develop transparent doxorubicin-loaded nanodiamonds/cellulose nanocomposite membranes as potential wound dressings. Carbohyd Polym 143:231–238

    Article  CAS  Google Scholar 

  • Luong ND, Pahimanolis N, Hippi U, Korhonen JT, Ruokolainen J, Johansson LS, Nam JD, Seppala J (2011) Graphene/cellulose nanocomposite paper with high electrical and mechanical performances. J Mater Chem 21(36):13991–13998

    Article  Google Scholar 

  • Perlstein B, Daniels RD, Ocherashvilli A, Roth Y, Margel S, Mardor Y (2008) Convection-enhanced delivery of maghemite nanoparticles: increased efficacy and MRI monitoring. Neuro-oncology 10(2):153–161

    Article  CAS  Google Scholar 

  • Rabe M, Verdes D, Seeger S (2011) Understanding protein adsorption phenomena at solid surfaces. Adv Colloid Interface Sci 162(1–2):87–106

    Article  CAS  Google Scholar 

  • Raub CB, Unruh J, Suresh V, Krasieva T, Lindmo T, Gratton E, Tromberg BJ, George SC (2008) Image correlation spectroscopy of multiphoton images correlates with collagen mechanical properties. Biophys J 94(6):2361–2373

    Article  CAS  Google Scholar 

  • Richter AG, Kuzmenko I (2013) Using in situ X-ray reflectivity to study protein adsorption on hydrophilic and hydrophobic surfaces: benefits and limitations. Langmuir 29(17):5167–5180

    Article  CAS  Google Scholar 

  • Siddiqui A, Lehmann S, Haaksman V, Ogier J, Schellenberg C, van Loosdrecht MCM, Kruithof JC, Vrouwenvelder JS (2017) Porosity of spacer-filled channels in spiral-wound membrane systems: quantification methods and impact on hydraulic characterization. Water Res 119(Supplement C):304–311

    Article  CAS  Google Scholar 

  • Smyth M, Fournier C, Driemeier C, Picart C, Foster EJ, Bras J (2017) Tunable structural and mechanical properties of cellulose nanofiber substrates in aqueous conditions for stem cell culture. Biomacromol 18(7):2034–2044

    Article  CAS  Google Scholar 

  • Tang C, Ozcam AE, Stout B, Khan SA (2012) Effect of pH on protein distribution in electrospun PVA/BSA composite nanofibers. Biomacromol 13(5):1269–1278

    Article  CAS  Google Scholar 

  • Tartaj P, Morales MD, Veintemillas-Verdaguer S, Gonzalez-Carreno T, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):R182–R197

    Article  CAS  Google Scholar 

  • Wang S, Lu A, Zhang L (2015) Recent advances in regenerated cellulose materials. Prog Polym Sci 53:169–206

    Article  Google Scholar 

  • Weishaupt R, Siqueira G, Schubert M, Tingaut P, Maniura-weber K, Zimmermann T, Thony-meyer L, Faccio G, Ihssen J (2015) TEMPO-oxidized nanofibrillated cellulose as a high density carrier for bioactive molecules. Biomacromol 16(11):3640–3650

    Article  CAS  Google Scholar 

  • Yu F, Huang Y, Cole AJ, Yang VC (2009) The artificial peroxidase activity of magnetic iron oxide nanoparticles and its application to glucose detection. Biomaterials 30(27):4716–4722

    Article  CAS  Google Scholar 

  • Zhang H, Luo X, Tang H, Zheng M, Huang F (2017) A novel candidate for wound dressing: transparent porous maghemite/cellulose nanocomposite membranes with controlled release of doxorubicin from a simple approach. Mater Sci Eng, C 79:84–92

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported under the Project of National Natural Science Foundation of China (NSFC) (No. 31501436), the Natural Science Foundation of Shaanxi Province, China (No. 2014JQ2-3012), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the fund of the Beijing Advanced Innovation Center for Food Nutrition and Human Health; Beijing Engineering and Technology Research Center of Food Additives, Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University (BTBU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Teng, C., Tian, H. et al. Fabrication of functional magnetic cellulose nanocomposite membranes for controlled adsorption of protein. Cellulose 25, 2977–2986 (2018). https://doi.org/10.1007/s10570-018-1750-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1750-2

Keywords

Navigation