Skip to main content

Advertisement

Log in

Synthesis and characterization of alkyl cellulose ω-carboxyesters for amorphous solid dispersion

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Poor drug solubility and consequently poor bioavailability are major impediments to new drug innovation, and they limit the performance of many existing drugs. In recent years amorphous solid dispersion (ASD) has emerged as one of the most effective approaches for enhancing drug solution concentration, and thereby bioavailability, including in many marketed drug formulations. Recently efforts have been under way in several laboratories to design new ASD polymers, rather than relying on polymers that are already in FDA-approved formulations, but were not designed as ASD polymers. We describe here the design and synthesis of a new class of polymers, alkyl cellulose ω-carboxyesters, for ASD formulation. We synthesize these polymers by reaction of cellulose alkyl ethers with monoprotected (benzyl ester), monofunctional long chain acid chlorides, followed by protecting group removal using mild hydrogenolysis to form the target alkyl cellulose ω-carboxyalkanoate. These new amphiphilic polymers have high glass transition temperatures (Tg), tunable carboxyl content for controlling release pH and drug-polymer interactions, and certain members of this new group of amphiphilic cellulose ether esters are shown to be successful at forming ASDs with the important model drug ritonavir. These ASDs efficiently release ritonavir at small intestine pH, creating the maximum attainable amorphous solubility (20 μg/mL), and maintaining it for a time period substantially greater than the normal residence time in the absorptive region of the stomach and small intestine. Members of this new class of alkyl cellulose ω-carboxyester amphiphiles show significant potential as ASD polymers for enhancing oral bioavailability of otherwise poorly soluble drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Albertsson AC, Lundmark S (1990) Melt polymerization of adipic anhydride (oxepane-2,7-dione). J Macromol Sci 27:397–412. doi:10.1080/00222339009349564

    Article  Google Scholar 

  • Al-Obaidi H, Buckton G (2009) Evaluation of griseofulvin binary and ternary solid dispersions with HPMCAS. AAPS PharmSciTech 10:1172–1177. doi:10.1208/s12249-009-9319-x

    Article  CAS  Google Scholar 

  • Arca HC (2016) Cellulose esters and cellulose ether esters for oral drug delivery systems. Dissertation, Virginia Tech

  • Babcock WC, Friesen DT, Lyon DK, Miller WK, Smithey DT (2005) Pharmaceutical compositions with enhanced performance. WO2005115330 A2

  • Babcock WC, Friesen DT, Lyon DK, Miller WK, Smithey DT (2013) Pharmaceutical compositions with enhanced performance. US Patent 8,617,604

  • Bittorf KJ, Katstra JP, Gaspar F (2014) Pharmaceutical compositions. US Patent 8,885,152

  • Casterlow SA (2012) Characterization and Pharmacokinetics of Rifampicin Laden Carboxymethylcellulose Acetate Butyrate Particles. Dissertation, Virginia Tech

  • Chow S-L, Wong D (2011) Controlled release hydrogel formulation. US Patent Application US 20110165236 A1

  • Dawsey TR, McCormick TLJ (1990) The lithium chloride/dimethylacetamide solvent for cellulose: a literature review. Macromol Sci C 30:405–440. doi:10.1080/07366579008050914

    Article  Google Scholar 

  • Erler U, Mischnick P, Stein A, Klemm D (1992) Determination of the substitution patterns of cellulose methyl ethers by HPLC and GLC-comparison of methods. Polym Bull 29:349–356. doi:10.1007/BF00944830

    Article  CAS  Google Scholar 

  • Fedors RF (1974) A method for estimating both the solubility parameters and molar volumes of liquids. Polym Eng Sci 14:147–154. doi:10.1002/pen.760140211

    Article  CAS  Google Scholar 

  • Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762. doi:10.1016/S0079-6700(01)00022-3

    Article  CAS  Google Scholar 

  • Ilevbare GA, Liu H, Edgar KJ, Taylor LS (2012a) Understanding Polymer Properties Important for Crystal Growth Inhibition – Impact of Chemically Diverse Polymers on Solution Crystal Growth of Ritonavir. Cryst Growth Des 12:3133–3143. doi:10.1021/cg300325p

    Article  CAS  Google Scholar 

  • Ilevbare GA, Liu H, Edgar KJ, Taylor LS (2012b) Inhibition of solution crystal growth of ritonavir by cellulose polymers—factors influencing polymer effectiveness. CrystEngComm 14:6503–6514. doi:10.1039/C2CE25515D

    Article  CAS  Google Scholar 

  • Ilevbare GA, Liu H, Edgar KJ, Taylor LS (2013) Maintaining supersaturation in aqueous drug solutions: impact of different polymers on induction times. Cryst Growth Des 13:740–751. doi:10.1021/cg301447d

    Article  CAS  Google Scholar 

  • Kar N, Liu H, Edgar KJ (2011) Synthesis of cellulose adipate derivatives. Biomacromolecules 12:1106–1115. doi:10.1021/bm101448f

    Article  CAS  Google Scholar 

  • Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S (2011) Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm 420:1–10. doi:10.1016/j.ijpharm.2011.08.032

    Article  CAS  Google Scholar 

  • Khougaz K, Clas SD (2000) Crystallization inhibition in solid dispersions of MK-0591 and poly(vinylpyrrolidone) polymers. J Pharm Sci 89:1325–1334. doi:10.1002/1520-6017(200010)89:10<1325:AID-JPS10>3.0.CO;2-5

    Article  CAS  Google Scholar 

  • Krayz GT, Averbuch M, Zelkind I, Gitis L (2009) Compositions comprising lipophilic active compounds and method for their preparation. US Patent 9,254,268

  • Lauer ME, Grassmann O, Siam M, Tardio J, Jacob L, Page S, Kindt JH, Engel A, Alsenz J (2011) Atomic force microscopy-based screening of drug-excipient miscibility and stability of solid dispersions. Pharm Res 28:572–584. doi:10.1007/s11095-010-0306-4

    Article  CAS  Google Scholar 

  • Li B, Konecke S, Wegiel LA, Taylor LS, Edgar KJ (2013a) Both solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices. Carbohydr Polym 98:1108–1116. doi:10.1016/j.carbpol.2013.07.017

    Article  CAS  Google Scholar 

  • Li B, Harich K, Wegiel L, Taylor LS, Edgar KJ (2013b) Stability and solubility enhancement of ellagic acid in cellulose ester solid dispersions. Carbohydr Polym 92:1443–1450. doi:10.1016/j.carbpol.2012.10.051

    Article  CAS  Google Scholar 

  • Li B, Konecke S, Harich K, Weigel L, Taylor LS, Edgar KJ (2013c) Solid dispersion of quercetin in cellulose derivative matrices influences both solubility and stability. Carbohy Carbohydr Polym 92:2033–2040. doi:10.1016/j.carbpol.2012.11.073

    Article  CAS  Google Scholar 

  • Liu H, Kar N, Edgar KJ (2012) Direct synthesis of cellulose adipate derivatives using adipic anhydride. Cellulose 19:1279–1293. doi:10.1007/s10570-012-9724-2

    Article  CAS  Google Scholar 

  • Liu H, Ilevbare GA, Cherniawski BP, Ritchie ET, Taylor LS, Edgar KJ (2014) Synthesis and structure–property evaluation of cellulose ω-carboxyesters for amorphous solid dispersions. Carbohydr Polym 100:116–125. doi:10.1016/j.carbpol.2012.11.049

    Article  CAS  Google Scholar 

  • Malm CJ, Emerson J, Hiait GD (1951) Cellulose acetate phthalate as an enteric coating material. J Am Pharm Assoc (Scientific ed) 40:520–525. doi:10.1002/jps.3030401014

    Article  CAS  Google Scholar 

  • Malm CJ, Laird BC, Smith GD, Tanghe LJ (1954) Determination of total and primary hydroxyl in cellulose esters by ultraviolet absorption methods. Anal Chem 26:188–190. doi:10.1021/ac60085a029

    Article  CAS  Google Scholar 

  • Miller JM, Beig A, Carr RA, Spence JK, Dahan A (2012) A win-win solution in oral delivery of lipophilic drugs: supersaturation via amorphous solid dispersions increases apparent solubility without sacrifice of intestinal membrane permeability. Mol Pharm 9:2009–2016. doi:10.1021/mp300104s

    Article  CAS  Google Scholar 

  • Nasatto P, Pignon F, Silveira J, Duarte MER, Noseda MD, Rinaudo M (2015) Methylcellulose, a cellulose derivative with original physical properties and extended applications. Polymers 7:777–803. doi:10.3390/polym7050777

    Article  CAS  Google Scholar 

  • Pereira JM, Mejia-Ariza R, Ilevbare GA, McGettigan HE, Sriranganathan N, Taylor LS, Davis RM, Edgar KJ (2013) Interplay of degradation, dissolution and stabilization of clarithromycin and its amorphous solid dispersions. Mol Pharm 10:4640–4653. doi:10.1021/mp400441d

    Article  CAS  Google Scholar 

  • Posey-Dowty JD, Watterson TL, Wilson AK, Edgar KJ, Shelton MC, Lingerfelt LR (2007) Zero-order release formulations using a novel cellulose ester. Cellulose 14:73–83. doi:10.1007/s10570-006-9079-7

    Article  CAS  Google Scholar 

  • Qian F, Huang J, Hussain MA (2010) Drug-polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development. J Pharm Sci 99:2941–2947. doi:10.1002/jps.22074

    Article  CAS  Google Scholar 

  • Rumondor AC, Stanford LA, Taylor LS (2009) Effects of polymer type and storage relative humidity on the kinetics of felodipine crystallization from amorphous solid dispersions. Pharm Res 26:2599–2606. doi:10.1007/s11095-009-9974-3

    Article  CAS  Google Scholar 

  • Sarode AL, Sandhu H, Shah N, Malick W, Zia H (2013) Hot melt extrusion (HME) for amorphous solid dispersions: predictive tools for processing and impact of drug-polymer interactions on supersaturation. Eur J Pharm Sci 48:371–384. doi:10.1016/j.ejps.2012.12.012

    Article  CAS  Google Scholar 

  • Shelton MC, Posey-Dowty JD, Lingerfelt L, Kirk SK, Klein S, Edgar KJ (2009) Enhanced dissolution of poorly soluble drugs from solid dispersions in carboxymethylcellulose acetate butyrate matrices. In ACS Symposium Series, vol 1017. Oxford University Press, Oxford, pp. 93–113

  • Tanno F, Nishiyama Y, Kokubo H, Obara S (2004) Evaluation of hypromellose acetate succinate (HPMCAS) as a carrier in solid dispersions. Drug Dev Ind Pharm 30:9–17. doi:10.1081/DDC-120027506

    Article  CAS  Google Scholar 

  • Terbojevich M, Cosani A, Camilot M, Focher B (1995) Solution Studies of Cellulose Tricarbanilates Obtained in Homogeneous Phase. J Appl Polym Sci 55:1663–1671. doi:10.1002/app.1995.070551206

    Article  CAS  Google Scholar 

  • Van den Mooter G (2012) The use of amorphous solid dispersions: a formulation strategy to overcome poor solubility and dissolution rate. Drug Discov Today Technol 9:e71–e174. doi:10.1016/j.ddtec.2011.10.002

    Google Scholar 

  • Vasconcelos T, Sarmento B, Costa P (2007) Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today 12:1068–1075. doi:10.1016/j.drudis.2007.09.005

    Article  CAS  Google Scholar 

  • Wegiel LA, Zhao Y, Mauer LJ, Edgar KJ, Taylor LS (2014) Curcumin amorphous solid dispersions: the influence of intra and intermolecular bonding on physical stability. Pharm Dev Technol 19:976–986. doi:10.3109/10837450.2013.846374

    Article  CAS  Google Scholar 

  • Zheng X, Gandour RD, Edgar KJ (2013) TBAF-catalyzed deacylation of cellulose esters: reaction scope and influence of reaction parameters. Carbohydr Polym 98:692–698. doi:10.1016/j.carbpol.2013.06.010

    Article  CAS  Google Scholar 

  • Zhou D, Zhang GGZ, Law D, Grant DJW, Schmitt EA (2002) Physical stability of amorphous pharmaceuticals: importance of configurational thermodynamic quantities and molecular mobility. J Pharm Sci 91:1863–1872. doi:10.1002/jps.10169

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ashland Inc. for their kind donation of EC used in this work. We thank the NSF for funding this work through award 1312157-IIP. We are grateful to the Macromolecules and Interfaces Institute (MII), and the Institute for Critical Technologies and Applied Science (ICTAS) at Virginia Tech for their financial, facility, and educational support. We thank Dr. Ann Norris for assistance with XRD experiments, and Mr. Scott Radzinski and Mr. Kevin Drummey for assistance with SEC experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Edgar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 686 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arca, H.C., Mosquera-Giraldo, L.I., Taylor, L.S. et al. Synthesis and characterization of alkyl cellulose ω-carboxyesters for amorphous solid dispersion. Cellulose 24, 609–625 (2017). https://doi.org/10.1007/s10570-016-1156-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1156-y

Keywords

Navigation