Skip to main content
Log in

Ion reduction in metallic nanoparticles nucleation and growth on cellulose films: Does substrate play a role?

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

An Erratum to this article was published on 03 January 2015

Abstract

The effect of the substrate (GaAs, Si, glass or Au) on the reduction of silver and gold ions in AgNO3 and HAuCl4·3H2O salts aqueous solutions was here studied. The main goal of this study was the understanding of the reduction mechanism of silver and gold ions in interaction with ultrathin cellulose films deposited on different substrates. Surface morphology was observed and measured using atomic force microscopy (AFM) and its chemical composition characterized by X-ray photoelectron spectroscopy (XPS). Results show that, besides the contribution of the cellulose film to the metallic ions reduction and nanoparticle (NP) growth, the substrate also plays an active role. This is clearly evident in the case of silicon, gallium arsenide, and gold substrates, either bare or covered by cellulose films. For bare glass substrates, no NPs were observed contrarily to glass substrates covered by a cellulose film, where NPs appear on the cellulose film. Yet, XPS showed that, in this last case, metallic ion reduction did not occur, at least in the surface region of the film, where oxidized silver was detected, suggesting a weak or absent reduction power of cellulose. In all cases, XPS C 1s spectra of the cellulose did not show any oxidation of the film. Anyway, the images point out the important role of the cellulose covering film on the final distribution of NPs on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aizawa M, Buriak JM (2007) Block copolymer templated chemistry for the formation of metallic nanoparticle arrays on semiconductor surfaces. Chem Mater 19:5090–5101. doi:10.1021/cm071382b

    Article  CAS  Google Scholar 

  • Albe K, Nordlund K, Nord J, Kuronen A (2002) Modeling of compound semiconductors: analytical bond-order potential for Ga, As, and GaAs. Phys Rev B 66:035205. doi:10.1103/PhysRevB.66.035205

  • Baer DR, Engelhard MH (2010) XPS analysis of nanostructured materials and biological surfaces. J Electron Spectrosc Relat Phenom 178:415–432. doi:10.1016/j.elspec.2009.09.003

    Article  Google Scholar 

  • Bard AJ, Parsons R, Jordan J (eds) (1985) Standard potentials in aqueous solutions. IUPAC Commission on electrochemistry and electroanalytical chemistry. Marcel Dekker Inc, New York

    Google Scholar 

  • Beamson G, Briggs D (1992) High resolution XPS of organic polymers: the Scienta ESCA300 database. Wiley, Chichester

    Google Scholar 

  • Bollani M, Bietti S, Frigeri C, Chrastina D, Reyes K, Smereka P, Millunchick JM, Vanacore GM, Burghammer M, Tagliaferri A, Sanguinetti S (2014) Ordered arrays of embedded Ga nanoparticles on patterned silicon substrates. Nanotechnology 25:205301. doi:10.1088/0957-4484/25/20/205301

  • Boufi S, Ferraria AM, Botelho do Rego AM, Battaglini N, Herbst F, Vilar MR (2011) Surface functionalisation of cellulose with noble metals nanoparticles through a selective nucleation. Carbohydr Polym 86:1586–1594. doi:10.1016/j.carbpol.2011.06.067

    Article  CAS  Google Scholar 

  • Briggs D, Grant JT (eds) (2003) Surface analysis (by auger and X-ray photoelectron spectroscopy). IM Publications, Chichester

    Google Scholar 

  • Campbell DT, Parker SC, Starr DE (2002) The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298:811–814. doi:10.1126/science.1075094

    Article  CAS  Google Scholar 

  • Canamares MV, Garcia-Ramos JV, Gomez-Varga JD, Domingo C, Sanchez-Cortes S (2005) Comparative study of the morphology, aggregation, adherence to glass, and surface-enhanced Raman scattering activity of silver nanoparticles prepared by chemical reduction of Ag+ using citrate and hydroxylamine. Langmuir 21:8546–8553. doi:10.1021/la050030l

    Article  CAS  Google Scholar 

  • Carapeto AP, Ferraria AM, Brogueira P, Boufi S, Botelho do Rego AM (2014) Cellulose films: designing template-free nanoporous cellulose films on semiconducting surfaces. Microsc Microanal. doi:10.1017/S1431927614001706

    Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. doi:10.1021/cr030698+

    Article  CAS  Google Scholar 

  • El-Rafie MH, Shaheen TI, Mohamed AA, Hebeish A (2012) Bio-synthesis and applications of silver nanoparticles onto cotton fabrics. Carbohydr Polym 90:915–920. doi:10.1016/j.carbpol.2012.06.020

    Article  CAS  Google Scholar 

  • Ferraria AM, Boufi S, Battaglini N, Botelho do Rego AM, Vilar MR (2010) Hybrid systems of silver nanoparticles generated on cellulose surfaces. Langmuir 26:1996–2001. doi:10.1021/la902477q

    Article  CAS  Google Scholar 

  • Ferraria AM, Carapeto AP, Botelho do Rego AM (2012) X-ray photoelectron spectroscopy: silver salts revisited. Vacuum 86:1988–1991. doi:10.1016/j.vacuum.2012.05.031

    Article  CAS  Google Scholar 

  • Horcas I, Fernández R, Gómez-Rodríguez JM, Colchero J, Gómez-Herrero J, Baro AM (2007) WSxM: a software for scanning probe microscopy and a tool for Nanotechnology. Rev Sci Instrum 78:1–8. doi:10.1063/1.2432410

    Article  Google Scholar 

  • Khatab A, Lemine OM, Alkaoud A, Falamas A, Aziz M, Galvão Gobato Y, Henini M (2013) Photoluminescence intensity enhancement in self-assembled InAs quantum dots grown on (311) B and (100) GaAs substrates and coated with gold nanoparticles. Physica E Low Dimens Syst Nanostruct 54:233–236. doi:10.1016/j.physe.2013.06.027

    Article  CAS  Google Scholar 

  • Kontturi E, Thüne PC, Alexeev A, Niemantsverdriet JW (2005) Introducing open films of nanosized cellulose—atomic force microscopy and quantification of morphology. Polymer 46:3307–3317. doi:10.1016/j.polymer.2005.02.087

    Article  CAS  Google Scholar 

  • Lide DR (ed) (2009) CRC handbook of chemistry and physics, 89th Edition (Internet Version 2009). CRC Press/Taylor and Francis, Boca Raton

    Google Scholar 

  • Lu Q, Gao F, Komarneni S (2006) Cellulose-directed growth of selenium nanobelts in solution. Chem Mater 18:159–163. doi:10.1021/cm051082z

    Article  CAS  Google Scholar 

  • Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA (2001) Plasmonics—a route to nanoscale optical devices. Adv Mater 13:1501–1505. doi:10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z

  • Malinsky MD, Kelly KL, Schatz GC, Duyne RPV (2001) Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles. J Phys Chem B 105:2343–2350. doi:10.1021/jp002906x

    Article  CAS  Google Scholar 

  • Naumkin AV, Kraut-Vass A, Gaarenstroom SW, Powell CJ (2012) NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 4.1

  • Ori G, Gentili D, Cavallini M, Franchini MC, Zapparoli M, Montorsi M, Siligardi C (2012) Immobilization of monolayer protected lipophilic gold nanorods on a glass surface. Nanotechnology 23:23055605. doi:10.1088/0957-4484/23/5/055605

  • Vilar RM, Elbeghdadi J, Debontridder F, Naaman R, Ferraria AM, Botelho do Rego AM (2005) Characterization of wet-etched GaAs (100) surfaces. Surf Interface Anal 37:673–682. doi:10.1002/sia.2062

    Article  Google Scholar 

  • Sarkar S, Guibal E, Quignard F, SenGupta AK (2012) Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications. J Nanoparticle Res 14:715. doi:10.1007/s11051-011-0715-2

  • Sayed SY, Daly B, Buriak JM (2008) Characterization of the interface of gold and silver nanostructures on InP and GaAs synthesized via galvanic displacement. J Phys Chem C 112:12291–12298. doi:10.1021/jp803887g

    Article  CAS  Google Scholar 

  • Schauermann S, Nilius N, Shaikhutdinov S, Freund H-J (2013) Nanoparticles for heterogeneous catalysis: new mechanistic insights. Acc Chem Res 46:1673–1681. doi:10.1021/ar300225s

    Article  CAS  Google Scholar 

  • Seah MP (2001) Summary of ISO/TC 201 Standard: VII ISO 15472—surface chemical analysis—X-ray photoelectron spectrometers—calibration of energy scales. Surf Interface Anal 31:721–723. doi:10.1002/sia.1076

    Article  CAS  Google Scholar 

  • Shimoda M, Konishi T, Nishiwaki N, Yamashita Y, Yoshikawa H (2012) Sulfur-mediated palladium catalyst immobilized on a GaAs surface. J Appl Phys 111:124908. doi:10.1063/1.4730377

  • Turyanska L, Makarovsky O, Patanè A, Kozlova NV, Liu Z, Li M, Mann S (2012) High magnetic field quantum transport in Au nanoparticle—cellulose films. Nanotechnology 23:045702. doi:10.1088/0957-4484/23/4/045702

  • Vilar MR, Boufi S, Ferraria AM, Botelho do Rego AM (2007) Chemical modification of semiconductor surfaces by means of nanometric cellulose films. J Phys Chem C 111:12792–12803. doi:10.1021/jp073850a

    Article  CAS  Google Scholar 

  • Vilar MR, Botelho do Rego AM, Boufi S, Parra V, Ferraria AM (2008a) Grafting of porphyrins on cellulose nanometric films. Langmuir 24:7309–7315. doi:10.1021/la800786s

    Article  Google Scholar 

  • Vilar MR, Botelho do Rego AM, Ferraria AM, Jugnet Y, Noguès C, Peled D, Naaman R (2008b) Interaction of self-assembled monolayers of DNA with electrons: HREEL and XPS studies. J Phys Chem B 112:6957–6964. doi:10.1021/jp8008207

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. Nunes de Carvalho for the gold deposition and Prof. Pedro Brogueira for AFM microscope availability. The authors gratefully acknowledge the financial support provided by the North Atlantic Treaty Organization (NATO) Science for Peace grant MD_CLG_982316 and by the Fundação para a Ciência e a Tecnologia (FCT) project PEst-OE/CTM/LA0024/2013. A.P. Carapeto thanks FCT for PhD Grant, SFRH/BD/75734/2011.

Conflict of interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Maria Ferraria.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 517 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carapeto, A.P., Ferraria, A.M., Boufi, S. et al. Ion reduction in metallic nanoparticles nucleation and growth on cellulose films: Does substrate play a role?. Cellulose 22, 173–186 (2015). https://doi.org/10.1007/s10570-014-0468-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0468-z

Keywords

Navigation