Skip to main content

Advertisement

Log in

Controlled release and long-term antibacterial activity of chlorhexidine digluconate through the nanoporous network of microfibrillated cellulose

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The recent study focusing on paper coated with microfibrillated cellulose (MFC) revealed the ability of such a structure to achieve a controlled release of molecules introduced into its nanoporous network. The present study examines this concept using a chlorhexidine digluconate-based (CHX) antibacterial solution. Various analyses were performed, optical microscopy, FE-SEM and AFM to underline the structure of the nanoporous MFC network. Release studies were conducted in an aqueous medium following two different protocols and antibacterial tests were done to evaluate the efficiency of the final materials obtained. MFC coating provided a slower and more progressive release of CHX. Indeed, papers impregnated with CHX were active for 18 days, whereas papers coated with CHX/MFC retained their antibacterial activity for 45 days. In parallel, similar tests were carried out using a model coating slurry, and although the rate of release of CHX was also slowed down, the quantities released were insufficient to confer any antibacterial activity. In conclusion, this study suggests that the use of MFC as a coating could be very promising since it allows a controlled and progressive release of molecules preserving long-term antibacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AFNOR (2005) Papier et carton destinés à entrer en contact avec des denrées alimentaires. Détermination du transfert des constituants antimicrobiens. In: AFNOR, section: Q 03-091

  • Ankerfors M, Lindström T, Hoc M, Song H (2009) Composition for coating of printing paper. Patent No WO 2009/123560 A1

  • Aulin C, Netrval J, Wagberg L, Lindström T (2010a) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6(14):3298–3305

    Article  CAS  Google Scholar 

  • Aulin C, Gällstedt M, Lindström T (2010b) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17(3):559–574

    Article  CAS  Google Scholar 

  • Blackburn RS, Harvey A, Kettle LL, Manian AP, Payne JD, Russell SJ (2007) Sorption of chlorhexidine on cellulose: mechanism of binding and molecular recognition. J Phys Chem B 111(30):8775–8784

    Article  CAS  Google Scholar 

  • Chauve G, Bras J (2014) Industrial point of view of nanocellulose materials and their possible applications. In: Handbook series on green materials, vol 1. World Scientific, pp 233–252

  • Chinga-Carrasco G, Syverud K (2010) Computer-assisted quantification of the multi-scale structure of films made of nanofibrillated cellulose. J Nanopart Res 12:841–851

    Article  CAS  Google Scholar 

  • Dufresne A (2012) Nanocellulose: from nature to high performance tailored materials. De Gruyter, Germany, p 475

  • Efentakis M, Pagoni I, Vlachou M, Avgoustakis K (2007) Dimensional changes, gel layer evolution and drug release studies in hydrophilic matrices loaded with drugs of different solubility. Int J Pharm 339(1–2):66–75

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33

    Article  CAS  Google Scholar 

  • Fujisawa S, Ikeuchi T, Takeuchi M, Saito T, Isogai A (2012) Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies. Biomacromolecules 13(7):2188–2194

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwamoto S, Kumamoto Y, Ohdaira T, Suzuki R, Isogai A (2011) Pore size determination of TEMPO-oxidized cellulose nanofibril films by positron annihilation lifetime spectroscopy. Biomacromolecules 12(11):4057–4062

    Article  CAS  Google Scholar 

  • Giménez-Martín E, López-Andrade M, Ontiveros-Ortega A, Espinosa-Jiménez M (2009) Adsorption of chlorhexidine onto cellulosic fibers. Cellulose 16(3):467–479

    Article  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  CAS  Google Scholar 

  • Hamada H, Bousfield WD (2010) Nano-fibrillated cellulose as a coating agent to improve print quality of synthetic fiber sheets. In: TAPPI 11th advanced coating fundamentals symposium, Munich, Germany

  • Hamada H, Beckvermit J, Bousfield WD (2010) Nanofibrillated cellulose with fine clay as a coating agent to improve print quality. In: PaperCon 2010 conference, Atlanta, USA, p 11

  • Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43(8):3434–3441

    Article  CAS  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci 37:797–813

    CAS  Google Scholar 

  • Houston S, Hougland P, Anderson JJ, LaRocco M, Kennedy V, Gentry LO (2002) Effectiveness of 0.12 % chlorhexidine gluconate oral rinse in reducing prevalence of nosocomial pneumonia in patients undergoing heart surgery. Am J Crit Care 11(6):567–570

    Google Scholar 

  • Hult EL, Iotti M, Lenes M (2010) Efficient approach to high barrier packaging using microfibrillar cellulose and shellac. Cellulose 17(3):575–586

    Article  CAS  Google Scholar 

  • Ishii D, Saito T, Isogai A (2011) Viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 12(3):548–550

    Article  CAS  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85

    Article  CAS  Google Scholar 

  • Jeansonne MJ, White RR (1994) A comparison of 2.0 % chlorhexidine gluconate and 5.25 % sodium hypochlorite as antimicrobial endodontic irrigants. J Endod 20(6):276–278

    Article  CAS  Google Scholar 

  • Kolakovic R (2013) Nanofibrillar cellulose in drug delivery. Doctor thesis, University of Helsinki, p 52

  • Kolakovic R, Peltonen L, Laaksonen T, Putkisto K, Laukkanen A, Hirvonen J (2011) Spray-dried cellulose nanofibers as novel tablet excipient. AAPS PharmSciTech 12(4):1366–1373

    Article  CAS  Google Scholar 

  • Kolakovic R, Laaksonen T, Peltonen L, Laukkanen A, Hirvonen J (2012a) Spray-dried nanofibrillar cellulose microparticles for sustained drug release. Int J Pharm 430(1–2):47–55

    Article  CAS  Google Scholar 

  • Kolakovic R, Peltonen L, Laukkanen A, Hirvonen J, Laaksonen T (2012b) Nanofibrillar cellulose films for controlled drug delivery. Eur J Pharm Biopharm 82(2):308–315

    Article  CAS  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    Article  CAS  Google Scholar 

  • Lavoine N, Desloges I, Khelifi B, Bras J (2014a) Impact of different coating processes of microfibrillated cellulose on the mechanical and barrier properties of paper. J Mater Sci 49(7):2879–2893

    Article  CAS  Google Scholar 

  • Lavoine N, Desloges I, Bras J (2014b) Microfibrillated cellulose coatings as new release systems for active packaging. Carbohydr Polym 103:528–537

    Article  CAS  Google Scholar 

  • Luu TW, Richmond F, Bilodeau M, Bousfield WD (2011) Nano-fibrillated cellulose as a paper surface treatment for inkjet printing. In: 2011 TAPPI international conference on nanotechnology for renewable materials, Arlington, USA

  • Martins N, Freire C, Pinto R, Fernandes S, Pascoal Neto C, Silvestre A, Causio J, Baldi G, Sadocco P, Trindade T (2012) Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacterial paper products. Cellulose 19(4):1425–1436

    Article  CAS  Google Scholar 

  • Minelli M, Baschetti MG, Doghieri F, Ankerfors M, Lindström T, Siró I, Plackett D (2010) Investigation of mass transport properties of microfibrillated cellulose (MFC) films. J Membr Sci 358(1–2):67–75

    Article  CAS  Google Scholar 

  • Missoum K, Belgacem M, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6(5):1745–1766

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Nicoli S, Colombo P, Santi P (2005) Release and permeation kinetics of caffeine from bioadhesive transdermal films. AAPS J 7(1):E218–E223

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941

    Article  Google Scholar 

  • Raso EMG, Cortes M, Teixeira K, Franco M, Mohallem N, Sinisterra R (2010) A new controlled release system of chlorhexidine and chlorhexidine: βCD inclusion compounds based on porous silica. J Incl Phenom Macrocycl Chem 67(1–2):159–168

    Article  CAS  Google Scholar 

  • Ridgway C, Gane P (2012) Constructing NFC-pigment composite surface treatment for enhanced paper stiffness and surface properties. Cellulose 19(2):547–560

    Article  CAS  Google Scholar 

  • Sehaqui H, Zhou Q, Berglund LA (2011a) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71(13):1593–1599

    Article  CAS  Google Scholar 

  • Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011b) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12(10):3638–3644

    Article  CAS  Google Scholar 

  • Şenel S, İkinci G, Kaş S, Yousefi-Rad A, Sargon MF, Hıncal AA (2000) Chitosan films and hydrogels of chlorhexidine gluconate for oral mucosal delivery. Int J Pharm 193(2):197–203

    Article  Google Scholar 

  • Shields RJ, Bhattacharyya D, Fakirov S (2008) Oxygen permeability analysis of microfibril reinforced composites from PE/PET blends. Compos A Appl Sci Manuf 39(6):940–949

    Article  Google Scholar 

  • Siepmann J, Siepmann F (2011) Modeling of diffusion controlled drug delivery. J Control Release 161(2):351–362

    Article  Google Scholar 

  • Silva T, Habibi Y, Colodette J, Elder T, Lucia LA (2012) A fundamental investigation of the microarchitecture and mechanical properties of tempo-oxidized nanofibrillated cellulose (NFC)-based aerogels. Cellulose 19(6):1945–1956

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494

    Article  Google Scholar 

  • Sriamornsak P, Kennedy RA (2007) Effect of drug solubility on release behavior of calcium polysaccharide gel-coated pellets. Eur J Pharm Sci 32(3):231–239

    Article  CAS  Google Scholar 

  • Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16(1):75–85

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1985) Micro-fibrillated cellulose and process for producing it. Patent no CH 648071 (A5)

  • Valo H, Kovalainen M, Laaksonen P, Häkkinen M, Auriola S, Peltonen L, Linder M, Järvinen K, Hirvonen J, Laaksonen T (2011) Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matrices-enhanced stability and release. J Control Release 156:390–397

    Article  CAS  Google Scholar 

  • Valo H, Arola S, Laaksonen P, Torkkeli M, Peltonen L, Linder MB, Serimaa R, Kuga S, Hirvonen J, Laaksonen T (2013) Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur J Pharm Sci 50:69–77

    Article  CAS  Google Scholar 

  • Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79(4):1086–1093

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Sandra Tapin-Lingua (FCBA, France) for supplying the MFC suspension. This work was made possible by the use of specific equipment of the TekLiCell platform supported by Region Rhône-Alpes through FEDER (European fund for regional development) funding. LGP2 is part of the LabEx Tec 21 (Investissements d’Avenir - grant agreement n°ANR-11-LABX-0030) and of the Énergies du Futur and PolyNat Carnot Institutes (Investissements d’Avenir - grant agreements n°ANR-11-CARN-007-01 and ANR-11-CARN-030-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Bras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavoine, N., Desloges, I., Sillard, C. et al. Controlled release and long-term antibacterial activity of chlorhexidine digluconate through the nanoporous network of microfibrillated cellulose. Cellulose 21, 4429–4442 (2014). https://doi.org/10.1007/s10570-014-0392-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0392-2

Keywords

Navigation