Skip to main content
Log in

X-ray diffraction from faulted cellulose I constructed with mixed Iα–Iβ stacking

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose from higher plants is usually thought to be a composite of the Iα and Iβ allomorphs, with predominance of the latter. Instead of the pure allomorphs, this article proposes that Iα and Iβ stacking patterns coexist within each crystallite, forming a type of crystallographic defect known as stacking fault. Models of faulted crystallites are constructed with mixed Iα–Iβ stacking and their X-ray diffraction intensities are calculated using the Diffracted Intensities From Faulted Xtals (DIFFaX) computer program. Simulated powder diffractograms from faulted crystallites compare favorably with experimental data, modifying diffractogram regions that have been misfit by models based on the Iβ crystal structure. Calculations also reveal that stacking faults generate a signature in the (hkl) dependence of diffraction line broadening, guiding further experimental verification and eventual quantification of stacking faults. Our findings bring an alternative view of native cellulose polymorphism and suggest that the proposed stacking faults are ubiquitous crystallographic defects in cellulose from higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285

    Article  CAS  Google Scholar 

  • Atalla RH, Vanderhart DL (1999) The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl Magn Reson 15:1–19

    Article  CAS  Google Scholar 

  • Ciesielski PN, Matthews JF, Tucker MP et al (2013) 3D electron tomography of pretreated biomass informs atomic modeling of cellulose microfibrils. ACS Nano 7:8011–8019

    Article  CAS  Google Scholar 

  • Debzi EM, Chanzy H, Sugiyama J et al (1991) The Iα → Iβ transformation of highly crystalline cellulose by annealing in various mediums. Macromolecules 24:6816–6822

    Article  CAS  Google Scholar 

  • Driemeier C (2014) Two-dimensional Rietveld analysis of celluloses from higher plants. Cellulose 21:1065–1073

    Article  CAS  Google Scholar 

  • Driemeier C, Calligaris GA (2011) Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials. J Appl Crystallogr 44:184–192

    Article  CAS  Google Scholar 

  • Fernandes AN, Thomas LH, Altaner CM et al (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci 108:E1195–E1203

    Article  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Horii F, Yamamoto H, Kitamaru R et al (1987) Transformation of native cellulose crystals induced by saturated steam at high temperatures. Macromolecules 20:2946–2949

    Article  CAS  Google Scholar 

  • Hosemann R, Hindeleh AM (1995) Structure of crystalline and paracrystalline condensed matter. J Macromol Sci Part B Phys B34:327–356

    Article  CAS  Google Scholar 

  • Imai T, Sugiyama J (1998) Nanodomains of Iα and Iβ cellulose in algal microfibrils. Macromolecules 31:6275–6279

    Article  CAS  Google Scholar 

  • Jarvis M (2003) Cellulose stacks up. Nature 426:611–612

    Article  CAS  Google Scholar 

  • Larsson PT, Wickholm K, Iversen T (1997) A CP/MAS 13C NMR investigation of molecular ordering in celluloses. Carbohydr Res 302:19–25

    Article  CAS  Google Scholar 

  • Leoni M, Gualtieri AF, Roveri N (2004) Simultaneous refinement of structure and microstructure of layered materials. J Appl Crystallogr 37:166–173

    Article  CAS  Google Scholar 

  • Müller M, Czihak C, Burghammer M, Riekel C (2000) Combined X-ray microbeam small-angle scattering and fibre diffraction experiments on single native cellulose fibres. J Appl Crystallogr 33:817–819

    Article  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    Article  CAS  Google Scholar 

  • Nishiyama Y, Johnson GP, French AD (2012) Diffraction from nonperiodic models of cellulose crystals. Cellulose 19:319–336

    Article  CAS  Google Scholar 

  • Oliveira RP, Driemeier C (2013) CRAFS: a model to analyze two-dimensional X-ray diffraction patterns of plant cellulose. J Appl Cryst 46:1196–1210

    Article  CAS  Google Scholar 

  • Popa NC (1998) The (hkl) dependence of diffraction-line broadening caused by strain and size for all Laue groups in Rietveld refinement. J Appl Crystallogr 31:176–180

    Article  CAS  Google Scholar 

  • Sassi J-F, Tekely P, Chanzy H (2000) Relative susceptibility of the Iα and Iβ phases of cellulose towards acetylation. Cellulose 7:119–132

    Article  CAS  Google Scholar 

  • Sturcová A, His I, Apperley DC et al (2004) Structural details of crystalline cellulose from higher plants. Biomacromolecules 5:1333–1339

    Article  Google Scholar 

  • Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175

    Article  CAS  Google Scholar 

  • Thomas LH, Forsyth VT, Sturcová A et al (2013) Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol 161:465–476

    Article  CAS  Google Scholar 

  • Thygesen A, Oddershede J, Lilholt H et al (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576

    Article  CAS  Google Scholar 

  • Treacy MMJ, Newsam JM, Deem MW (1991) A general recursion method for calculating diffracted intensities from crystals containing planar faults. Proc R Soc London A 433:499–520

    Article  Google Scholar 

  • Wada M, Okano T, Sugiyama J, Horii F (1995) Characterization of tension and normally lignified wood cellulose in Populus maximowiczii. Cellulose 2:223–233

    Article  CAS  Google Scholar 

  • Warren BE (1990) X-ray diffraction. Dover Publications, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Driemeier.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Driemeier, C., Francisco, L.H. X-ray diffraction from faulted cellulose I constructed with mixed Iα–Iβ stacking. Cellulose 21, 3161–3169 (2014). https://doi.org/10.1007/s10570-014-0390-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0390-4

Keywords

Navigation