Skip to main content
Log in

Creating cellulose fibres with excellent UV protective properties using moist CF4 plasma and ZnO nanoparticles

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Weakly ionised gaseous plasma created in a moist tetrafluoromethane gas at a low pressure with an electrodeless radiofrequency discharge was applied to modify the surface properties of cellulose fibres. The plasma was used to increase the adsorption of zinc oxide (ZnO) nanoparticles such that cellulose fibres with good ultraviolet (UV) protective properties could be created. The UV protection factor (UPF) values of the ZnO-functionalised fibres were determined as a function of the plasma treatment time. The chemical and physical surface properties of the plasma-treated fibres were examined using scanning electron microscopy, X-ray photoelectron spectroscopy, and wettability tests. The quantity of zinc on the fibres was determined using inductively coupled plasma mass spectroscopy. The results indicated that 30 s of plasma treatment resulted in ZnO-functionalised samples with lower UPF values than samples without plasma treatment due to the creation of fluorine-rich functional groups on cellulose fibres and the agglomeration of ZnO nanoparticles. The highest UPF values (50+) were obtained when samples were treated with plasma for 10 s. These high UPF values were a result of the increased adsorption of uniformly distributed ZnO nanoparticles caused by fibres surface functionalization and roughening upon plasma treatment. Furthermore, the mechanical properties of textiles treated with moist CF4 plasma for 10 s were slightly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbott GM (1977) Corona treatment of cotton.1. Sliver cohesion. Text Res J 47(2):141–144

    Google Scholar 

  • Abbott GM, Robinson GA (1977) Corona treatment of cotton.2. Yarn and fabric properties. Text Res J 47(3):199–202

    Google Scholar 

  • Annaratone BM, Counsell GF, Kawano H, Allen JE (1992) On the use of double probes in RF discharges. Plasma Sour Sci Technol 1(4):232–241. doi:10.1088/0963-0252/1/4/002

    Article  Google Scholar 

  • Australian/New Zealand Standard (1996). Sun protective clothing-evaluation and classification, vol AS/NZS 4399. Standards Australia, Homebush, Australia

  • Balu B, Breedveld V, Hess DW (2008) Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir 24(9):4785–4790. doi:10.1021/la703766c

    Article  CAS  Google Scholar 

  • Becheri A, Durr M, Nostro PL, Baglioni P (2008) Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanopart Res 10(4):679–689. doi:10.1007/s11051-007-9318-3

    Article  CAS  Google Scholar 

  • Broasca G, Borcia G, Dumitrascu N, Vrinceanu N (2013) Characterization of ZnO coated polyester fabrics for UV protection. Appl Surf Sci 279:272–278. doi:10.1016/j.apsusc.2013.04.084

    Article  CAS  Google Scholar 

  • Canal C, Gaboriau F, Villeger S, Cvelbar U, Ricard A (2009) Studies on antibacterial dressings obtained by fluorinated post-discharge plasma. Int J Pharm 367(1–2):155–161. doi:10.1016/j.ijpharm.2008.09.038

    Article  CAS  Google Scholar 

  • Caschera D, Cortese B, Mezzi A, Brucale M, Ingo GM, Gigli G, Padeletti G (2013) Ultra hydrophobic/superhydrophilic modified cotton textiles through functionalized diamond-like carbon coatings for self-cleaning applications. Langmuir 29(8):2775–2783. doi:10.1021/la305032k

    Article  CAS  Google Scholar 

  • Ceria A, Rombaldoni F, Rovero G, Mazzuchetti G, Sicardi S (2010) The effect of an innovative atmospheric plasma jet treatment on physical and mechanical properties of wool fabrics. J Mater Process Technol 210(5):720–726. doi:10.1016/j.jmatprotec.2009.12.006

    Article  CAS  Google Scholar 

  • Coburn JW, Winters HF (1979) Plasma-etching—discussion of mechanisms. Journal of Vacuum Science & Technology 16(2):391–403. doi:10.1116/1.569958

    Article  CAS  Google Scholar 

  • Dagostino R, Cramarossa F, Illuzzi F (1987) Mechanisms of deposition and etching of thin films of plasma—polymerized fluorinated monomers in radiofrequency discharges fed with C2F6–H2 and C2F6–O2 mixtures. J Appl Phys 61(8):2754–2762. doi:10.1063/1.337864

    Article  CAS  Google Scholar 

  • D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T (2013) UV radiation and the skin. Int J Mol Sci 14(6):12222–12248. doi:10.3390/ijms140612222

    Article  Google Scholar 

  • Egitto FD, Vukanovic V, Taylor GN (1990) Plasma etching of organic polymers. In: d’Agostino R (ed) Plasma deposition, treatment, and etching of polymers. Academic Press Inc, San Diego, p 528

    Google Scholar 

  • Elsner P, Blome O, Diepgen TL (2013) UV-induced occupational skin cancer: possibilities of secondary individual prevention in the “Dermatologist’s Procedure”. J Dtsch Dermatol Ges 11(7):625–630. doi:10.1111/ddg.12118

    Google Scholar 

  • Fridman A (2008) Plasma chemistry. Cambridge University Press, New York

    Book  Google Scholar 

  • Gorenšek M, Gorjanc M, Bukošek V, Kovač J, Jovančić P, Mihailović D (2010a) Functionalization of PET fabrics by corona and nano silver. Text Res J 80(3):253–262. doi:10.1177/0040517509105275

    Article  Google Scholar 

  • Gorenšek M, Gorjanc M, Bukošek V, Kovač J, Petrović Z, Puač N (2010b) Functionalization of polyester fabric by Ar/N2 plasma and silver. Text Res J 80(16):1633–1642. doi:10.1177/0040517510365951

    Article  Google Scholar 

  • Gorjanc M, Bukošek V, Gorenšek M, Mozetič M (2010a) CF4 plasma and silver functionalized cotton. Text Res J 80(20):2204–2213. doi:10.1177/0040517510376268

    Article  CAS  Google Scholar 

  • Gorjanc M, Bukošek V, Gorenšek M, Vesel A (2010b) The influence of water vapor plasma treatment on specific properties of bleached and mercerized cotton fabric. Text Res J 80(6):557–567. doi:10.1177/0040517509348330

    Article  CAS  Google Scholar 

  • Hwang YJ, An JS, McCord MG, Park SW, Kang BC (2003) The effect of etching on low-stress mechanical properties of polypropylene fabrics under helium/oxygen atmospheric pressure plasma. Fiber Polym 4(4):145–150. doi:10.1007/bf02908270

    Article  CAS  Google Scholar 

  • Hwang YJ, McCord MG, Kang BC (2005) Helium/oxygen atmospheric pressure plasma treatment on poly(ethylene terephthalate) and poly(trimethylene terephthalate) knitted fabrics: comparison of low-stress mechanical/surface chemical properties. Fiber Polym 6(2):113–120. doi:10.1007/bf02875601

    Article  CAS  Google Scholar 

  • Johansson LS, Campbell JM (2004) Reproducible XPS on biopolymers: cellulose studies. Surf Interface Anal 36(8):1018–1022. doi:10.1002/sia.1827

    Article  CAS  Google Scholar 

  • Johansson LS, Campbell J, Koljonen K, Kleen M, Buchert J (2004) On surface distributions in natural cellulosic fibres. Surf Interface Anal 36(8):706–710. doi:10.1002/sia.1741

    Article  CAS  Google Scholar 

  • Kamlangkla K, Paosawatyanyong B, Pavarajarn V, Hodak JH, Hodak SK (2010) Mechanical strength and hydrophobicity of cotton fabric after SF6 plasma treatment. Appl Surf Sci 256(20):5888–5897. doi:10.1016/j.apsusc.2010.03.070

    Article  CAS  Google Scholar 

  • Kan CW, Lam YL (2013) Low stress mechanical properties of plasma-treated cotton fabric subjected to zinc oxide-anti-microbial treatment. Materials 6(1):314–333. doi:10.3390/ma6010314

    Article  CAS  Google Scholar 

  • Kathirvelu S, D’Souza L, Dhurai B (2009) UV protection finishing of textiles using ZnO nanoparticles. Indian J Fibre Text Res 34(3):267–273

    CAS  Google Scholar 

  • Kinloch AJ (1980) The science of adhesion. 1: surface and interfacial aspects. J Mater Sci 15(9):2141–2166. doi:10.1007/bf00552302

    Article  CAS  Google Scholar 

  • Kolarova K, Vosmanska V, Rimpelova S, Svorcik V (2013) Effect of plasma treatment on cellulose fiber. Cellulose 20(2):953–961. doi:10.1007/s10570-013-9863-0

    Article  CAS  Google Scholar 

  • Lam YL, Kan CW, Yuen CW, Au CH (2011a) Low stress mechanical properties of plasma-treated cotton fabric subjected to titanium dioxide coating. Text Res J 81(10):1008–1013. doi:10.1177/0040517510396001

    Article  CAS  Google Scholar 

  • Lam YL, Kan CW, Yuen CWM (2011b) Effect of zinc oxide on flame retardant finishing of plasma pre-treated cotton fabric. Cellulose 18(1):151–165. doi:10.1007/s10570-010-9466-y

    Article  CAS  Google Scholar 

  • Lam YL, Kan CW, Yuen CWM (2013) A study of metal oxide on antimicrobial effect of plasma pre-treated cotton fabric. Fiber Polym 14(1):52–58. doi:10.1007/s12221-013-0052-4

    Article  CAS  Google Scholar 

  • Li Y, Hou YY, Zou YL (2012) Microwave assisted fabrication of nano-ZnO assembled cotton fibers with excellent UV blocking property and water-wash durability. Fiber Polym 13(2):185–190. doi:10.1007/s12221-012-0185-x

    Article  CAS  Google Scholar 

  • Marsh DH, Riley DJ, York D, Graydon A (2009) Sorption of inorganic nanoparticles in woven cellulose fabrics. Particuology 7(2):121–128. doi:10.1016/j.partic.2009.01.004

    Article  CAS  Google Scholar 

  • McCord MG, Hwang YJ, Qiu Y, Hughes LK, Bourham MA (2003) Surface analysis of cotton fabrics fluorinated in radio-frequency plasma. J Appl Polym Sci 88(8):2038–2047. doi:10.1002/app.11896

    Article  CAS  Google Scholar 

  • Mihailović D, Saponjić Z, Molina R, Puač N, Jovančić P, Nedeljković J, Radetić M (2010) Improved properties of oxygen and argon RF plasma-activated polyester fabrics loaded with TiO2 nanoparticles. ACS Appl Mater Interfaces 2(6):1700–1706. doi:10.1021/am100209n

    Article  Google Scholar 

  • Mihailović D, Saponjić Z, Radoičić M, Lazović S, Baily CJ, Jovančić P, Nedeljković J, Radetić M (2011) Functionalization of cotton fabrics with corona/air RF plasma and colloidal TiO2 nanoparticles. Cellulose 18(3):811–825. doi:10.1007/s10570-011-9510-6

    Article  Google Scholar 

  • Montazer M, Amiri MM (2014) ZnO nano reactor on textiles and polymers: ex situ and in situ synthesis, application, and characterization. J Phys Chem B 118(6):1453–1470. doi:10.1021/jp408532r

    Article  CAS  Google Scholar 

  • Montazer M, Amiri MM, Malek RMA (2013) In situ synthesis and characterization of nano ZnO on wool: influence of nano photo reactor on wool properties. Photochem Photobiol 89(5):1057–1063. doi:10.1111/php.12090

    Article  CAS  Google Scholar 

  • Österberg M, Peresin MS, Johansson LS, Tammelin T (2013) Clean and reactive nanostructured cellulose surface. Cellulose 20(3):983–990. doi:10.1007/s10570-013-9920-8

    Article  Google Scholar 

  • Peršin Z, Vesel A, Kleinschek KS, Mozetič M (2012) Characterisation of surface properties of chemical and plasma treated regenerated cellulose fabric. Text Res J 82(20):2078–2089. doi:10.1177/0040517512445338

    Article  Google Scholar 

  • Peršin Z, Devetak M, Drevenšek-Olenik I, Vesel A, Mozetič M, Stana-Kleinschek K (2013) The study of plasma’s modification effects in viscose used as an absorbent for wound-relevant fluids. Carbohydr Polym 97(1):143–151. doi:10.1016/j.carbpol.2013.04.045

    Article  Google Scholar 

  • Puač N, Petrović ZL, Radetić M, Djordjević A (2005) Low pressure RF capacitively coupled plasma reactor for modification of seeds, polymers and textile fabrics. Mater Science Forum 494:291–296. doi:10.4028/www.scientific.net/MSF.494.291

  • Qing YQ, Zheng YS, Hu CB, Wang Y, He Y, Gong Y, Mo Q (2013) Facile approach in fabricating superhydrophobic ZnO/polystyrene nanocomposite coating. Appl Surf Sci 285:583–587. doi:10.1016/j.apsusc.2013.08.097

    Article  CAS  Google Scholar 

  • Ramamoorthy A, El-Shafei A, Hauser P (2013) Plasma induced graft polymerization of C6 fluorocarbons on cotton fabrics for sustainable finishing applications. Plasma Process Polym 10(5):430–443. doi:10.1002/ppap.201200111

    Article  CAS  Google Scholar 

  • Shateri-Khalilabad M, Yazdanshenas ME (2013) Bifunctionalization of cotton textiles by ZnO nanostructures: antimicrobial activity and ultraviolet protection. Text Res J 83(10):993–1004. doi:10.1177/0040517512468812

    Article  Google Scholar 

  • Sricharussin W, Threepopnatkul P, Neamjan N (2011) Effect of various shapes of zinc oxide nanoparticles on cotton fabric for UV-blocking and anti-bacterial properties. Fiber Polym 12(8):1037–1041. doi:10.1007/s12221-011-1037-9

    Article  CAS  Google Scholar 

  • Syed DN, Khan MI, Shabbir M, Mukhtar H (2013) MicroRNAs in skin response to UV radiation. Curr Drug Targets 14(10):1128–1134

    Article  CAS  Google Scholar 

  • Ugur SS, Sariisik M, Aktas AH, Ucar MC, Erden E (2010) Modifying of cotton fabric surface with nano-ZnO multilayer films by layer-by-layer deposition method. Nanoscale Res Lett 5(7):1204–1210. doi:10.1007/s11671-010-9627-9

    Article  CAS  Google Scholar 

  • Uzarska M, Czajkowski R, Schwartz RA, Bajek A, Zegarska B, Drewa T (2013) Chemoprevention of skin melanoma: facts and myths. Melanoma Res 23(6):426–433. doi:10.1097/cmr.0000000000000016

    Article  CAS  Google Scholar 

  • Vasiljević J, Gorjanc M, Tomšič B, Orel B, Jerman I, Mozetič M, Vesel A, Simončič B (2013a) The surface modification of cellulose fibres to create super-hydrophobic, oleophobic and self-cleaning properties. Cellulose 20(1):277–289. doi:10.1007/s10570-012-9812-3

    Article  Google Scholar 

  • Vasiljević J, Gorjanc M, Zaplotnik R, Vesel A, Mozetič M, Simončič B (2013b) Water-vapour plasma treatment of cotton and polyester fibres. Mater Tehnol 47(3):379–384

    Google Scholar 

  • Vesel A (2011) Hydrophobization of polymer polystyrene in fluorine plasma. Mater Tehnol 45(3):217–220

    CAS  Google Scholar 

  • Vesel A, Kolar M, Doliska A, Stana-Kleinschek K, Mozetic M (2012a) Etching of polyethylene terephthalate thin films by neutral oxygen atoms in the late flowing afterglow of oxygen plasma. Surf Interface Anal 44(13):1565–1571. doi:10.1002/sia.5064

    Article  CAS  Google Scholar 

  • Vesel A, Zaplotnik R, Iacono J, Balat-Pichelin M, Mozetič M (2012b) A catalytic sensor for measurement of radical density in CO2 plasmas. Sensors 12(12):16168–16181. doi:10.3390/s121216168

    Article  CAS  Google Scholar 

  • Vigneshwaran N, Kumar S, Kathe AA, Varadarajan PV, Prasad V (2006) Functional finishing of cotton fabrics using zinc oxide-soluble starch nanocomposites. Nanotechnology 17(20):5087–5095. doi:10.1088/0957-4484/17/20/008

    Article  CAS  Google Scholar 

  • Wakelyn PJ, Bertoniere NR, French AD, Thibodeaux DP, Triplett BA, Rousselle M-A, Goynes GRJ, Edwards JV, Hunter L, McAlister DD, Gamble GR (2007) Cotton fiber chemistry and technology. In: International fiber science and technology series. CRC Press, Taylor & Francis Group, cop., Boca Raton, London, New York

  • Wong KK, Tao XM, Yuen CWM, Yeung KW (1999) Low temperature plasma treatment of linen. Text Res J 69(11):846–855. doi:10.1177/004051759906901108

    Article  CAS  Google Scholar 

  • Xu LH, Zheng GG, Miao JH, Xian FL (2012) Dependence of structural and optical properties of sol-gel derived ZnO thin films on sol concentration. Appl Surf Sci 258(19):7760–7765. doi:10.1016/j.apsusc.2012.04.137

    Article  CAS  Google Scholar 

  • Yadav A, Prasad V, Kathe AA, Raj S, Yadav D, Sundaramoorthy C, Vigneshwaran N (2006) Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bull Mat Sci 29(6):641–645. doi:10.1007/s12034-006-0017-y

    Article  CAS  Google Scholar 

  • Zaplotnik R, Vesel A (2011) Radiofrequency induced plasma in large-scale plasma reactor. Mater Tehnol 45(3):227–231

    CAS  Google Scholar 

  • Zhang GY, Liu Y, Morikawa H, Chen YY (2013) Application of ZnO nanoparticles to enhance the antimicrobial activity and ultraviolet protective property of bamboo pulp fabric. Cellulose 20(4):1877–1884. doi:10.1007/s10570-013-9979-2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was financially supported by the Slovenian Research Agency (Programme P2-0213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija Gorjanc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorjanc, M., Jazbec, K., Šala, M. et al. Creating cellulose fibres with excellent UV protective properties using moist CF4 plasma and ZnO nanoparticles. Cellulose 21, 3007–3021 (2014). https://doi.org/10.1007/s10570-014-0284-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0284-5

Keywords

Navigation