Skip to main content
Log in

Stability and efficiency improvement of ASA in internal sizing of cellulosic paper by using cationically modified cellulose nanocrystals

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Alkenyl succinic anhydride (ASA) is a reactive sizing agent that can impart good water repellence to paper by decreasing the wettability of the cellulose fibers. However, ASA can undergo hydrolysis, which is detrimental to the ASA sizing efficiency. In order to improve the ASA emulsion stability and ASA sizing efficiency, we used cationically modified cellulose nanocrystals (CNCs) to stabilize the cationic starch-emulsified ASA. Transmission electron microscope observation revealed that ASA droplets were well shielded by both the cationic CNCs and cationic starch, which may be responsible for the improved stabilization of ASA. The Hercules size test sizing degree, contact angle and particle size measurements demonstrated that cationic CNCs–ASA sized paper exhibited improved results in comparison with the control (without cationic CNCs under otherwise the same conditions). Furthermore, the resulting cationic CNCs–ASA system can improve the tensile index and burst index of the sized paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahola S, Sterberg MO, Laine J (2008) Cellulose nanofibrils adsorption with poly (amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15:303–314

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17(1):21–27

    Article  CAS  Google Scholar 

  • Cha R, He Z, Ni Y (2012) Preparation and characterization of thermal/pH-sensitive hydrogel from carboxylated nanocrystalline cellulose. Carbohydr Polym 88(2):713–718

    Article  CAS  Google Scholar 

  • Chen Q, Ni Y, He Z (2012) Substitution of high-yield-pulp for harwood bleached kraft pulp in paper production and its effect on alkenyl succinic anhydride sizing. BioResources 7(2):1462–1473

    CAS  Google Scholar 

  • Dong XM, Kimura T, Revol JF, Gray DG (1996) Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12:2076–2082

    Article  CAS  Google Scholar 

  • Gess J, Rende D (2005) Alkenyl succinic anhydride (ASA). Tappi J 4(9):25–30

  • Gousse C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43(9):2645–2651

    Article  CAS  Google Scholar 

  • Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13(6):679–687

    Article  CAS  Google Scholar 

  • Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4(11):2238–2244

    Article  CAS  Google Scholar 

  • Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585

    Article  CAS  Google Scholar 

  • Ioelovich M, Leykin A (2004) Nano-cellulose and its application. J SITA 6(3):17–24

    CAS  Google Scholar 

  • Isogai A, Morimoto S (2004) Sizing performance and hydrolysis resistance of alkyl oleate succinic anhydrides. Tappi J 3(9):8–12

    CAS  Google Scholar 

  • Khalil ML, Beliakova MK, Aly AA (2001) Preparation of some starch ethers using the semi-dry state process. Carbohydr Polym 46(3):217–226

    Article  CAS  Google Scholar 

  • Koskela JP, Hormi OEO, Roberts JC, Guomei P (2003) The use of non ionic galactomannan polysaccarides for stabilization of ASA emulsions. Appita J 56(3):213–217

    CAS  Google Scholar 

  • Kristensen J, Schaefer T, Kleinbudde P (2000) Direct pelletization in a rotary processor controlled by torque measurements. II. Effects of changes in the content of microcrystalline cellulose. AAPS Pharm Sci 2(3):45–52

    Article  Google Scholar 

  • Lee HL, Kim JS, Youn HJ (2004) Improvement of ASA sizing efficiency using hydrophobically modified and acid-hydrolyzed starches. Tappi J 3(12):3–6

    CAS  Google Scholar 

  • Liu Z, Ni Y, Fatehi P, Saee A (2011) Isolation and cationization of hemicelluloses from pre-hydrolysis liquor of kraft-based dissolving pulp production process. Biomass Bioenergy 35:1789–1796

    Article  CAS  Google Scholar 

  • Martorana E, Fischer S, Kleemann S (2008) Einflüsse auf die Partikelgröse, Stabilität und Hydrolyse von ASA-Emulsionen. Wochenbl Papierfabr 136(8):392–401

    CAS  Google Scholar 

  • McCarthy WR, Stratton RA (1986) Effects of drying on ASA esterification and sizing. Tappi J 70:117–121

    Google Scholar 

  • Mohit T, Bhadra K, Goswami S, Agarawal NK (2007) Successful trials and optimization of ASA sizing. Ippta J 19:143–145

    Google Scholar 

  • Pettersson G, Höglund H, Wågberg L (2006) The use of polyelectrolyte multilayers of cationic starch and CMC to enhance strength properties of papers formed from mixtures of unbleached chemical pulp and CTMP. Part II influence of addition strategy, fibre treatment and fibre type. Nord Pulp Pap Res J 21:122–128

    Article  CAS  Google Scholar 

  • Qian K, Liu W, Zhang J, Li H, Wang H, Wang Z (2013) Using urea to improve stability, sizing performance and hydrolysis resistance of ASA emulsion stabilized by Laponite. Colloids Surf A 421:125–134

    Article  CAS  Google Scholar 

  • Qua EH, Hornsby PR, Sharma HSS, Lyons G, McCall RD (2009) Preparation and characterization of poly(vinyl alcohol) nanocomposites made from cellulose nanofibers. J Appl Polym Sci 113(4):2238–2247

    Article  CAS  Google Scholar 

  • Roberts JC (1997) A review of advances in internal sizing of paper. The fundamentals of papermaking materials. Trans. of the 11th Fund. Res. Symp., Cambridge, UK, Vol 1. Leatherhad, UK: Fundamental Research Committee and Pira International 209–263

  • Stratton RA, Colson NL (1993) Fibre wall damage during bond failure. Nordic Pulp Pap Res J 8(2):245–250

    Article  CAS  Google Scholar 

  • Wang H, Liu W, Zhou X, Li H, Qian K (2013) Stabilization of ASA-in-water emulsions by laponite modified with alanine. Colloids Surf A 436:294–301

    Article  CAS  Google Scholar 

  • Yu D, Liu W (2009) Preparation and sizing performance of inorganic particle stabilized ASA emulsion. China Pulp Pap 28(6):26–29

    Google Scholar 

  • Yuan HH, Nishiyama Y, Wada M, Kuga S (2006) Surface acylation of cellulose whiskers by drying aqueous emulsion. Biomacromolecules 7(3):696–700

    Article  CAS  Google Scholar 

  • Zaman M, Xiao H, Chibante F, Ni Y (2012) Synthesis and characterization of cationically modified nanocrystalline cellulose. Carbohydr Polym 89(1):163–170

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Canada Research Chairs Program, and the Tianjin Municipal Science and Technology Commission (Grant No. 12ZCZDGX01100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingxi Hou or Yonghao Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, B., Hou, Q., Liu, Z. et al. Stability and efficiency improvement of ASA in internal sizing of cellulosic paper by using cationically modified cellulose nanocrystals. Cellulose 21, 2879–2887 (2014). https://doi.org/10.1007/s10570-014-0283-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0283-6

Keywords

Navigation