Skip to main content
Log in

Theory and applications of fast Lyapunov indicators to model problems of celestial mechanics

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

In the last decades, we have seen a rapid increment in the use of finite-time chaos indicators in celestial mechanics. They have been used to analyze the complex dynamics of planetary systems, of minor planets and of space debris. In fact, theoretical studies on fundamental dynamical models have revealed that, computed on short time intervals, they allow to efficiently detect resonances, represent the phase portraits of complex dynamics, compute center-stable-unstable manifolds as well as Lagrangian coherent structures. In this paper, we focus on applications of the fast Lyapunov indicator (FLI) and review through examples why its computation is particularly powerful for those systems whose solutions may have an asymptotic behavior very different from the short-term one, as it is the case of sequences of close encounters in gravitational systems and the advection of particles in aperiodic flows. The main case study here considered is the computation of the manifold tubes and the related transit orbits in the restricted three-body problem. We also provide a new application of the FLI to a complex problem of planetary hydrodynamics, such as the detection of the stable and unstable manifolds guiding the motions of particles advected by the gas of a protoplanetary nebula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability

The code fargoOCA is available at: https://disc.pages.oca.eu/fargOCA/public/.

Notes

  1. For the Sun–Jupiter mass ratio, we have \(C_1= 3.0387...\), \(C_2= 3.0374...\); for the numerical experiments we use \(C=3.0368...\). We remark that the values of the Jacobi constant \(C_1,C_2\) are very close, and in particular, small changes of C close to \(C_1,C_2\) determine important changes in the shape of the realm of possible motions.

  2. The definition depends on the local inversion map used to choose \(\zeta (0)\): the indicators (29) are therefore locally defined; as a matter of fact it is sufficient to use a couple of indicators \(\textrm{mFLI}^{\pm }_\phi (\xi ,w(0),T)\) to cover the phase space, see Guzzo and Lega (2018).

  3. http://www.openexoplanetcatalogue.com/.

  4. A recently re-factorized version of the code can be found at: https://disc.pages.oca.eu/fargOCA/public/. The code is parallelized using a hybrid combination of MPI between the nodes and accelerated using the Kokkos library. This gives the possibility of running the code on a large variety of machine’s architectures mixing CPUs and GPUs.

References

  • Anderson, R.L., Easton, R.W., Lo, M.W.: Isolating blocks as computational tools in the circular restricted three-body problem. Phys. D 343, 38–50 (2017)

    MathSciNet  MATH  Google Scholar 

  • Alves, Silva R., Beaugé, C., Ferraz-Mello, S., Cincotta, P.M., Giordano, C.M.: Instability times in the HD 181433 exoplanetary system. Astron. Astrophys. 652, A112 (2021)

    Google Scholar 

  • Baruteau, C., Masset, F.: On the corotation torque in a radiatively inefficient disk. Astrophys. J. 672, 1054 (2008)

    ADS  Google Scholar 

  • Benettin, G., Galgani, L., Strelcyn, J.M.: Kolmogorov entropy and numerical experiments. Phys. Rev. A 14, 2338–2345 (1976)

    ADS  Google Scholar 

  • Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: Tous les nombres caracteristiques de Lyapunov sont effectivement calculables. Comptes Rendus Acad. Sc. Paris 286A, 431 (1978)

    ADS  MATH  Google Scholar 

  • Cardin, F., Guzzo, M.: Integrability of close encounters in the spatial restricted three-body problem. Commun. Contemp. Math. 24(06), 2150040 (2022)

    MathSciNet  MATH  Google Scholar 

  • Ceccaroni, M., Celletti, A., Pucacco, G.: Halo orbits around the collinear points of the restricted three-body problem. Phys. D 317(1), 28–42 (2016)

    MathSciNet  MATH  Google Scholar 

  • Celletti, A., Gales, C.: On the dynamics of space debris: 1:1 and 2:1 resonances. J. Nonlin. Sci 24, 1231C (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  • Celletti, A., Gales, C.: Dynamical investigation of minor resonances for space debris. Celest. Mech. Dynam. Astron. 123, 203–222 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  • Celletti, A., Lega, E., Stefanelli, L., Froeschlé, C.: Some results on the global dynamics of the regularized restricted three-body problem with dissipation. Celest. Mech. Dyn. Astron. 109, 265–284 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  • Celletti, A., Pucacco, G., Stella, D.: Lissajous and Halo orbits in the restricted three-body problem. J. Nonlinear Sci. 25, 2 (2015)

    MathSciNet  MATH  Google Scholar 

  • Cincotta, P., Simó, C.: Simple tools to study global dynamics in non-axisymmetric galactic potentials-I. Astron. Astrophys. Suppl. Ser. 147, 205 (2000)

    ADS  Google Scholar 

  • Cincotta, P.M., Giordano, C.M., Simó, C.: Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits. Phys. D 182(3–4), 151–178 (2003)

    MathSciNet  MATH  Google Scholar 

  • Couturier, J., Robutel, P., Correia, A.C.M.: Dynamics of co-orbital exoplanets in a first-order resonance chain with tidal dissipation. Astron. Astrophys. 664, A1 (2022)

    ADS  Google Scholar 

  • Conley, C.: Low energy transit orbits in the restricted three-body problems. SIAM J. Appl. Math. 16(4), 732–746 (1967)

    ADS  MathSciNet  MATH  Google Scholar 

  • Daquin, J., Legnaro, E., Gkolias, I., Efthymiopoulos, C.: A deep dive into the 2g+h resonance: separatrices, manifolds and phase space structure of navigation satellites. Cel. Mech. Dyn. Astron. 134, 6 (2022)

    ADS  MathSciNet  MATH  Google Scholar 

  • Delrez, L., Ehrenreich, D., Alibert, Y., Bonfanti, A., et al.: Transit detection of the long-period volatile-rich super-Earth \(\nu ^2\) Lupi d with CHEOPS. Nature Astron. 5, 775–787 (2021)

    ADS  Google Scholar 

  • Froeschlé, C., Guzzo, M., Lega, E.: Graphical evolution of the Arnold web: from order to chaos. Science 289(5487), 2108–2110 (2000)

    ADS  Google Scholar 

  • Froeschlé, C., Lega, E., Gonczi, R.: Fast Lyapunov indicators. Application to asteroidal motion. Celest. Mech. Dyn. Astron. 67, 41–62 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  • Fung, J., Artymowicz, P., Wu, Y.: The 3D flow field around an embedded planet. Astrophys. J. 811, 101 (2015)

    ADS  Google Scholar 

  • Garth, C., Gerhardt, F., Tricoche, X., Hagen, H.: Efficient computation and visualization of coherent structures in fluid flow applications. IEEE Trans. Visual Comput. Graphics 13(6), 1464–1471 (2007)

    Google Scholar 

  • Gkolias, I., Daquin, J., Skoulidou, D.K., Tsiganis, K., Efthymiopoulos, C.: Chaotic transport of navigation satellites. Chaos 29(10), 101106 (2019)

    ADS  MathSciNet  Google Scholar 

  • Gillon, M., et al.: Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542, 23 (2017)

    Google Scholar 

  • Gomez, G., Koon, W.S., Lo, M.W., Marsden, J.E., Masdemont, J., Ross, S.D.: Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity 17, 1571–1606 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  • Gómez, G., Jorba, À., Masdemont, J., Simó, C.: Dynamics and Mission Design Near Libration Point Orbits, Vol. 3: Advanced Methods for Collinear Points, World Scientific, Singapore, (2000)

  • Guzzo, M.: The web of three-planet resonances in the outer solar system II. A source of orbital instability for uranus and neptune. Icarus 181, 475–485 (2006)

    ADS  Google Scholar 

  • Guzzo, M., Lega, E.: On the identification of multiple close-encounters in the planar circular restricted three body problem. Mon. Not. R. Astron. Soc. 428, 2688–2694 (2013)

    ADS  Google Scholar 

  • Guzzo, M., Lega, E.: Evolution of the tangent vectors and localization of the stable and unstable manifolds of hyperbolic orbits by fast Lyapunov indicators. SIAM J. Appl. Math. 74(4), 1058–1086 (2014)

    MathSciNet  MATH  Google Scholar 

  • Guzzo, M., Lega, E.: A study of the past dynamics of comet 67P/Churyumov-Gerasimenko with fast Lyapunov indicators. Astron. Astrophys. 579(A79), 1–7 (2015)

    Google Scholar 

  • Guzzo, M., Lega, E.: Scenarios for the dynamics of comet 67P/Churyumov-Gerasimenko over the past 500 kyr. Mon. Not. R. Astron. Soc. 469, S321–S328 (2017)

    ADS  Google Scholar 

  • Guzzo, M., Lega, E.: Geometric chaos indicators and computations of the spherical hypertube manifolds of the spatial circular restricted three-body problem. Phys. D 373, 38–58 (2018)

    MathSciNet  MATH  Google Scholar 

  • Haller, G.: Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Phys. D 149, 248–277 (2000)

    MathSciNet  MATH  Google Scholar 

  • Haller, G.: Lagrangian coherent structures from approximate velocity data. Phys. Fluids 14(6), 1851–1861 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  • Haller, G.: Lagrangian coherent structures. Annu. Rev. Fluid Mech. 47, 137–162 (2015)

    ADS  MathSciNet  Google Scholar 

  • Hoang, Nam H., Mogavero, F., Laskar, J.: Chaotic diffusion of the fundamental frequencies in the solar system. Astron. Astrophys. 654, A156 (2021)

    ADS  Google Scholar 

  • Jiménez, M.A., Masset, F.S.: Improved torque formula for low-and intermediate-mass planetary migration. Mon. Not. R. Astron. Soc. 471, 4917 (2017)

    ADS  Google Scholar 

  • Jorba, A., Masdemont, J.: Dynamics in the center manifold of the restricted three-body problem. Phys. D 132, 189–213 (1999)

    MathSciNet  MATH  Google Scholar 

  • Kley, W., Nelson, R.P.: Planet-disk interaction and orbital evolution. Ann. Rev. Astron. Astrophys. 50, 211–249 (2012)

    ADS  Google Scholar 

  • Kley, W., Bitsch, B., Klahr, H.: Planet migration in three-dimensional radiative discs. Astron. Astrophys. 506, 971 (2009)

    ADS  MATH  Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Dynamical systems, the three body problem and space mission design. Marsden Books. ISBN 978-0-615-24095-4, (2008)

  • Kustaanheimo, P.: Spinor regularisation of the Kepler motion, Annales Universitatis Turkuensis A 73, 1-7. Also Publications of the Astronomical Observatory Helsinki 102, (1964)

  • Kustaanheimo, P., Stiefel, E.L.: Perturbation theory of Kepler motion based on spinor regularization. J. Reine Angew. Math. 218, 204–219 (1965)

    MathSciNet  MATH  Google Scholar 

  • Izidoro, A., Bitsch, B., Raymond, S.N., et al.: Formation of planetary systems by pebble accretion and migration. Hot super-Earth systems from breaking compact resonant chains. Astron. Astrophys. 650, A152 (2021)

    Google Scholar 

  • Lambrechts, M., Lega, E.: Reduced gas accretion on super-Earths and ice giants. Astron. Astrophys. 606, A146 (2017)

    ADS  Google Scholar 

  • Laskar, J.: The chaotic motion of the solar system. A numerical estimate of the size of the chaotic zones. Icarus 88, 266–291 (1990)

    ADS  Google Scholar 

  • Laskar, J., Froeschlé, C.L., Celletti, A.: The measure of chaos by the numerical analysis of the fundamental frequencies. Application to the standard mapping. Phys. D 56(2–3), 253–269 (1992)

    MathSciNet  MATH  Google Scholar 

  • Laskar, J.: Frequency analysis for multi-dimensional systems. Global dynamics and diffusion. Phys. D 67, 257 (1993)

    MathSciNet  MATH  Google Scholar 

  • Lega, E., Guzzo, M., Froeschlé, C.: Detection of close encounters and resonances in three-body problems through Levi-Civita regularization. Mon. Not. R. Astron. Soc. 418, 107–113 (2011)

    ADS  Google Scholar 

  • Lega, E., Crida, A., Bitsch, B., Morbidelli, A.: Migration of Earth-sized planets in 3D radiative discs. Mon. Not. R. Astron. Soc. 440, 683–695 (2014)

    ADS  Google Scholar 

  • Lega, E., Guzzo, M.: Three-dimensional representations of the tube manifolds of the planar restricted three-body problem. Phys. D 325, 41–52 (2016a)

    MathSciNet  MATH  Google Scholar 

  • Lega, E., Guzzo, M.: Theory and applications of the fast Lyapunov indicator (FLI) Method, In: Lecture Notes in Physics 915, Chaos Detection and Predictability, pp. 35-54, (2016b)

  • Lekien, F., Shadden, S.C., Marsden, J.E.: Lagrangian coherent structures in n-dimensional systems. J. Math. Phys. 48, 065404 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  • Lemaitre, A., Delsate, N., Valk, S.: A web of secondary resonances for large A/m geostationary debris. Celest. Mech. Dyn. Astron. 104, 383 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  • Levi-Civita, T.: Sur la régularisation qualitative du probléme restreint des trois corps. Acta Math. 30, 305–327 (1906)

    MathSciNet  MATH  Google Scholar 

  • Lipinski, D., Mohseni, K.: A 3D fast algorithm for computing Lagrangian coherent structures via ridge tracking, arXiv:1202.5236v1, (2012)

  • Martí, J.G., Cincotta, P.M., Beaugé, C.: Chaotic diffusion in the Gliese-876 planetary system. Mon. Not. R. Astron. Soc. 460(1), 1094–1105 (2016)

    ADS  Google Scholar 

  • Masdemont, J.J.: High order expansions of invariant manifolds of libration point orbits with applications to mission design. Dyn. Syst. Int. J. 20(1), 59–113 (2005)

    MathSciNet  MATH  Google Scholar 

  • Mezić, I., Wiggins, S.: A method for visualization of invariant sets of dynamical systems based on the ergodic partition. Chaos 9, 213–218 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  • Mitchenko, T.A., Ferraz-Mello, S.: Resonant structure of the outer solar system in the neighborhood of the planets. Astron. J. 122, 474–481 (2001)

    ADS  Google Scholar 

  • Oseledets, I.: A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19, 197–231 (1968)

    MATH  Google Scholar 

  • Paez, R.I., Guzzo, M.: A study of temporary captures and collisions in the circular restricted three-body problem with normalizations of the Levi-Civita hamiltonian. Int. J. Non-Lin. Mech. 120, 103417 (2020)

    Google Scholar 

  • Paardekooper, S.-J., Baruteau, C., Crida, A., Kley, W.: A torque formula for non-isothermal type I planetary migration. Mon. Not. R. Astron. Soc. 401, 1950 (2010)

    ADS  Google Scholar 

  • Pucacco, G.: Structure of the centre manifold of the \(L_1,L_2\) collinear libration points in the restricted three-body problem, Cel. Mech. Dyn. Astr., 131(44), (2019)

  • Robutel, P., Laskar, J.: Frequency map and global dynamics in the solar system I. Icarus 52(1), 4–28 (2001)

    ADS  Google Scholar 

  • Robutel, P.: Frequency map analysis and quasiperiodic decompositions, In: Hamiltonian Systems and Fourier Analysis, pp. 179–198. Camb. Sci. Publ., Cambridge (2005)

  • Robutel, P., Galern, F.: The resonant structure of Jupiter’s Trojan asteroids I. Long term stability and diffusion. Mon. Not. R. Astron. Soc. 372, 1463–1482 (2006)

    ADS  Google Scholar 

  • Scantamburlo, E., Guzzo, M.: Short-period effects of the planetary perturbations on the Sun-Earth Lagrangian point L3. Astron. Astrophys. 638, A137 (2020)

    ADS  Google Scholar 

  • Shadden, S.C., Lekien, F., Marsden, J.E.: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Phys. D 212, 271–304 (2005)

    MathSciNet  MATH  Google Scholar 

  • Simó, C.: Dynamical systems methods for space missions on a vicinity of collinear libration points, In: Simó, C., (ed.) Hamiltonian Systems with Three or More Degrees of Freedom (S’Agaró, 1995), volume 533 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pp. 223-241, Dordrecht. Kluwer Acad. Publ., (1999)

  • Szebehely, V.: Theory of orbits. Academic Press, New York (1967)

    MATH  Google Scholar 

  • Tang, X.Z., Boozer, A.H.: Finite time Lyapunov exponent and advection-diffusion equation. Phys. D 95, 283–305 (1996)

    MathSciNet  MATH  Google Scholar 

  • Todorović, N., Wu, D., Rosengren, A.J.: The arches of chaos in the solar system. Sci. Adv. 6(48), (2020)

  • Volpi, M., Roisin, A., Libert, A.-S.: The 3D secular dynamics of radial-velocity-detected planetary systems. Astron. Astrophys. 626, A74 (2019)

    ADS  Google Scholar 

  • Wiggins, S.: The dynamical systems approach to Lagrangian transport in oceanic flows. Annu. Rev. Fluid Mech. 37, 295 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  • Zanzottera, A., Castelli, R., Mingotti, G., Dellnitz, M.: Intersecting invariant manifolds in spatial restricted three-body problems: design and optimization of Earth-to-halo transfers in the Sun-Earth-Moon scenario. Commun. Nonlinear Sci. Num. Sim. 17(2), 832–843 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge HPC resources from GENCI DARI n.A0120407233 and from “Mesocentre SIGAMM” hosted by Observatoire de la Côte d’Azur. M.G. acknowledges the project MIUR-PRIN 20178CJA2B “New frontiers of Celestial Mechanics: theory and applications.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Guzzo.

Ethics declarations

Conflict of interest.

The authors have no competing interests, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Dedicated to the memory of Claude Froeschlé, we had the immense honor to embrace your intuition for disentangling intricate dynamics into beautiful and elegant images.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzzo, M., Lega, E. Theory and applications of fast Lyapunov indicators to model problems of celestial mechanics. Celest Mech Dyn Astron 135, 37 (2023). https://doi.org/10.1007/s10569-023-10152-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-023-10152-5

Navigation