Skip to main content
Log in

Impact of a moon on the evolution of a planet’s rotation axis: a non-resonant case

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We investigate how the temporal evolution of the rotation axis of a hypothetical exo-Earth is affected by the presence of a satellite, an exo-Moon. Namely, we study analytically and numerically how the range of the nutation angle of an exo-Earth changes if an exo-Moon is added to a system comprised of an exo-Sun, the exo-Earth and exoplanets. We say that the impact of an exo-Moon is stabilising if upon including the exo-Moon the range of the nutation angle decreases, and destabilising otherwise. The problem is considered in a general set-up. The exo-Earth is supposed to be rigid, axially symmetric and almost spherical, the difference between the largest and the smallest principal moments of inertia being a small parameter of the problem. Assuming the orbits of the celestial bodies to be quasi-periodic, we apply time averaging over fast variables associated with order one frequencies to study rotation of the exo-Earth at times large relative the respective periods. Non-resonant frequencies are assumed. For a system comprised of the exo-Sun and exoplanets in the absence of small orbital frequencies, the system is integrable, which allows to calculate the range of the nutation angle as a function of initial conditions. Using these expressions, we identify a class of systems for which we prove analytically that the impact of the exo-Moon is stabilising and a class where it is destabilising. Namely, if the orbits of the planets are circular and their orbital planes coincide then the impact is destabilising. The impact is stabilising if the angle between orbital planes of the exo-Moon and the exo-Earth vanishes. We also investigate numerically how the impact of the exo-Moon in a particular system comprised of a star and two planets varies on modifying parameters of the orbits of the exo-Moon and the second planet, and the initial nutation angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study will be available by request.

Notes

  1. Each frequency involved in the motion of celestial bodies can be assigned to one of two sets as follows. Some of the frequencies (such as the frequency of rotation of the Earth around its axis or the frequencies of the planetary orbital motions) are relatively large, and some (such as the frequency of precession of the Moon’s orbit or the frequencies related to perturbations of the Earths’ motion due to the motion of other planets) are relatively small (secular frequencies). In our asymptotic analysis, upon appropriately rescaling time, we treat frequencies belonging to the first set as order one frequencies.

  2. We assume that in the moonless system the range does not vanish for all initial conditions, because in this case the idea of stabilisation does not make sense. If this happens, \(\Delta ^{P+M}(I_0,h_0)=\Delta ^P(I_0,h_0)D^P/D^{P+M}=0\).

References

  • Andoyer, H.: Cours de Mécanique Céleste. Gauthier-Villars, Paris (1923)

    MATH  Google Scholar 

  • Armstrong, J.C., Barnes, R., Domagal-Goldman, S., Breiner, J., Quinn, T.R., Meadows, V.C.: Effects of extreme obliquity variations on the habitability of exoplanets. Astrobiology 14, 277–291 (2014)

    ADS  Google Scholar 

  • Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics. Springer, Berlin (2006)

    MATH  Google Scholar 

  • Aslanov, V.: Rigid Body Dynamics for Space Applications. Butterworth-Heinemann, Oxford (2017)

    MATH  Google Scholar 

  • Balk, M.B.: Elements of Space Flight Dynamics. Nauka, Moscow (1965)

    MATH  Google Scholar 

  • Beletskii, V.V.: Motion of a Satellite Relative to the Center of Mass in a Gravitational Field. MSU Press, Moscow (1975) (in Russian)

  • Beletskii, V.V.: Resonance rotation of celestial bodies and Cassini’s laws. Celest. Mech. 6, 356–378 (1972)

  • Beletskii, V.V.: Motion of an Artificial Satellite About Its Center of Mass. Israel Program for Scientific Translations, Jerusalem (1966)

    Google Scholar 

  • Bouquillon, S., Kinoshita, H., Souchay, J.: Extension of Cassini’s laws. Celest. Mech. Dyn. Astron. 86, 29–57 (2003)

  • Correia, A.C.M.: Stellar and planetary Cassini states. A &A 582, A69 (2015)

    Google Scholar 

  • Correia, A.C.M., Laskar, J.: Long-term evolution of the spin of Venus: II. Numerical simulations. Icarus 163, 24–45 (2003)

    ADS  Google Scholar 

  • Correia, A.C.M., Laskar, J., Néron de Surgy, O.: Long-term evolution of the spin of Venus: I. Theory. IcarusIcarus Icarus, 1–23 (2003)

    ADS  Google Scholar 

  • Cowan, N.B., Voigt, A., Abbot, D.S.: Thermal phases of Earth-like planets: estimating thermal inertia from eccentricity, obliquity, and diurnal forcing. Astrophys. J. 757, 80 (2012)

    ADS  Google Scholar 

  • Exoplanet catalog: https://exoplanets.nasa.gov/exoplanet-catalog/6987/7-canis-majoris-b/, https://exoplanets.nasa.gov/exoplanet-catalog/7505/7-canis-majoris-c/

  • Ferreira, D., Marshall, J., O’Gorman, P.A., Seager, S.: Climate at high-obliquity. Icarus 243, 236–248 (2014)

  • Hamilton, D.P., Ward, W.R.: Tilting Saturn. II. Numerical model. Astron. J. 128, 2510–2517 (2004)

    ADS  Google Scholar 

  • Heller, R., Leconte, J., Barnes, R.: Tidal obliquity evolution of potentially habitable planets. A &A 528, A27 (2011)

    Google Scholar 

  • Henrard, J., Lemaitre, A.: A second fundamental model for resonance. Celest. Mech. 30, 197–218 (1983)

    ADS  MathSciNet  MATH  Google Scholar 

  • Kasting, J.F., Catling, D.: Evolution of a habitable planet. Annu. Rev. Astron. Astrophys. 41, 429–463 (2003)

    ADS  Google Scholar 

  • Kilic, C., Raible, C.C., Stocker, T.F.: Multiple climate states of habitable exoplanets: the role of obliquity and irradiance. Astrophys. J. 844, 147 (2017)

    ADS  Google Scholar 

  • Kinoshita, H.: Theory of the rotation of the rigid Earth. Celest. Mech. 15, 277–326 (1977)

    ADS  Google Scholar 

  • Kipping, D.M., Hartman, J., Buchhave, L.A., et al.: The Hunt for Exomoons with Kepler (HEK). II. Analysis of seven viable satellite-hosting planets. Astrophys. J. 770, 101 (2013)

    ADS  Google Scholar 

  • Kipping, D.M., Forgan, D., Hartman, J., et al.: The Hunt for Exomoons with Kepler (HEK). III. The first search for an exomoon around a habitable-zone planet. Astrophys. J. 777, 134 (2013)

    ADS  Google Scholar 

  • Krasilnikov, P.S., Podvigina, O.M.: On evolution of the planet’s obliquity in a non-resonant planetary system. Bull. Udmurt Univ. Math. Mech. Comput. Sci. 28, 549–564 (2018) (in Russian)

  • Krasil’nikov, P.S., Zaharova, E.E.: Nonresonant rotations of a satellite about its center of mass in the restricted N-body problem. Cosm. Res. 31, 11–21 (1993)

  • Krasilnikov, P.S.: Applied Methods of Investigation of Non-linear Oscillations. IKI (2015) (in Russian)

  • Krasilnikov, P.S.: Spatial rotations of a satellite in a circular three-body problem for the case of general resonance. Cosm. Res. 28, 808–819 (1990)

    Google Scholar 

  • Krasilnikov, P.S., Amelin, R.N.: On the precession of Saturn. Cosm. Res. 56, 306–316 (2018). https://doi.org/10.1134/S0010952518040019

    Article  ADS  Google Scholar 

  • Laskar, J., Joutel, F., Robutel, P.: Stabilization of the Earth’s obliquity by the Moon. Nature 361, 615–617 (1993)

  • Laskar, J., Robutel, P.: The chaotic obliquity of the planets. Nature 361, 608–612 (1993)

    ADS  Google Scholar 

  • Laskar, J., Joutel, F., Boudin, F.: Orbital, precessional and insolation quantities for the Earth from -20Myr to +10Myr. A &A 270, 522–533 (1993)

    ADS  Google Scholar 

  • Laskar, J., Correia, A.M.C., Gastineau, M., Joutel, F., Levrard, B., Robutel, P.: Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170, 343–364 (2004)

    ADS  Google Scholar 

  • Lhotka, C.: Steady state obliquity of a rigid body in the spin-orbit resonant problem: application to Mercury. Celest. Mech. Dyn. Astron. 128, 397–414 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  • Li, G., Batygin, K.: On the spin-axis dynamics of a Moonless Earth. Astrophys. J. 790(7pp), 69 (2014)

    ADS  Google Scholar 

  • Lissauer, J.J., Barnes, J.W., Chambers, J.E.: Obliquity variations of a moonless Earth. Icarus 217, 77–87 (2011)

    ADS  Google Scholar 

  • Markeev, A.P., Krasilnikov, P.S.: On the motion of a satellite relative to the center of mass in the elliptic restricted three body problem. Cosm. Res. 19, 178–190 (1981)

    Google Scholar 

  • Milankovitch, M.: Canon of Insolation and the Ice-Age Problem. Serbian Academy, Belgrade (1941) (in German)

  • Millholland, S., Batygin, K.: Excitation of planetary obliquities through planet–disk interactions. Astron. J. 816(10pp), 119 (2019)

    Google Scholar 

  • Millholland, S., Laughlin, G.: Obliquity-driven sculpting of exoplanetary systems. Nat. Astron. 3, 424–433 (2019)

    ADS  Google Scholar 

  • Molchanov, A.M.: The resonant structure of the solar system: the law of planetary distances. Icarus 8, 203–215 (1968)

    ADS  Google Scholar 

  • Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  • Néron de Surgy, O., Laskar, J.: On the long term evolution of the spin of the Earth. A &A 318, 975 (1997)

    ADS  Google Scholar 

  • Peale, S.J.: Generalized Cassini laws. Astron. J. 74, 483–489 (1969)

    ADS  Google Scholar 

  • Podvigina, O.M., Krasilnikov, P.S.: Evolution of obliquity of an exoplanet: a non-resonant case. Icarus 335, 113371 (2020)

    Google Scholar 

  • Quarles, B., Barnes, J.W., Lissauer, J.J., Chambers, J.: Obliquity evolution of the potentially habitable exoplanet Kepler-62F. Astrobiology 20, 73–90 (2020)

    ADS  Google Scholar 

  • Quillen, A.C., Chen, Y.-Y., Noyelles, B., Loane, S.: Tilting Styx and Nix but not Uranus with a spin-precession-mean-motion resonance. Celest. Mech. Dyn. Astron. 130, 1–27 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  • Saillenfest, M., Laskar, J., Boué, G.: Secular spin-axis dynamics of exoplanets. A &A 623(21 pp.), A4 (2019)

    Google Scholar 

  • Sanders, J.A., Verhust, F.: Averaging Methods in Nonlinear Dynamical Systems. Springer, New York (1985)

    Google Scholar 

  • Shan, Y., Li, G.: Obliquity variations of habitable zone planets Kepler-62f and Kepler-186f. Astron. J. 155(15pp), 237 (2018)

    ADS  Google Scholar 

  • Smart, W.M.: Celestial Mechanics. Longmans, Green and Company, London (1953)

    MATH  Google Scholar 

  • Spiegel, D.S., Menou, K., Scharf, C.A.: Habitable climates: the influence of obliquity. Astrophys. J. 691, 596–610 (2009)

    ADS  Google Scholar 

  • Tisserand, F.: Traité de mécanique céleste, t. II. Gauthier-Villars, Paris (1889) (in French)

  • Volosov, V.M.: Russian Math. Surveys 17(1–126) (1962a)

  • Volosov, V.M.: Averaging in systems of ordinary differential equations. Uspekhi Mat. Nauk 17, 3–126 (1962b)

    MathSciNet  MATH  Google Scholar 

  • Ward, W.R.: Tidal friction and generalized Cassini’s laws in the solar system. Astron. J. 80, 64–70 (1975)

  • Ward, W.R., Hamilton, D.P.: Tilting Saturn. I. Analytical model. Astron. J. 128, 2501 (2004)

    ADS  Google Scholar 

  • Zheligovsky, V.A.: Large-Scale Perturbations of Magnetohydrodynamic Regimes: Linear and Weakly Nonlinear Stability Theory. Lecture Notes in Physics, vol. 829. Springer, Heidelberg (2011)

    Google Scholar 

Download references

Acknowledgements

Our research was carried out in the Moscow Aviation Institute and Institute of Earthquake Prediction Theory and Mathematical Geophysics, RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Podvigina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Calculation of \(\Delta \) in a planetary system, comprised of the exo-Sun, exo-Earth and exoplanets

Here we give a detailed derivation of approximations (28) for the range of the nutation angle from the Eqs. (18), (26), (27) for the temporal evolution of the angles I and h.

Steady states of system (18) satisfy \(\,\mathrm{d}\,I/\,\mathrm{d}\,t=\,\mathrm{d}\,h/\,\mathrm{d}\,t=0\). Therefore, due to (26) they can be found from the equations

$$\begin{aligned} \begin{array}{l} \sin 2I(-D+\alpha \cos 2h')+\beta \cos 2I\cos (h'+\gamma )=0,\\ -\sin ^2I\alpha \sin 2h'-\beta \sin 2I\sin (h'+\gamma )=0. \end{array} \end{aligned}$$
(37)

Since the mass of the exo-Sun is much larger than the masses of planets, due to (15), (16) and (27) we have that \(D\gg \max (|\alpha |,|\beta |)\). Therefore, the first equation in (37) implies \(\sin 2I\approx 0\). Hence, the steady states are

$$\begin{aligned} I\approx 0;\quad I\approx \pi ;\quad I\approx \pi /2,\ h'\approx 0,\pi /2,\pi ,3\pi /2, \end{aligned}$$

where \((I\approx \pi /2,h'\approx 0)\) and \((I\approx \pi /2,h'\approx \pi )\) are saddles and the other ones are centres. The saddles are connected by heteroclinic trajectories that divide the celestial sphere into four regions, each comprised of a centre and closed trajectories around it, see Fig. 2a.

Since \(\,\mathrm{d}\,I/\,\mathrm{d}\,h'=\,\mathrm{d}\,I/\,\mathrm{d}\,t(\,\mathrm{d}\,h'/\,\mathrm{d}\,t)^{-1}\), the extrema of \(I(h')\) take place at

$$\begin{aligned} -\sin ^2I\alpha \sin 2h'-\beta \sin 2I\sin (h'+\gamma )=0. \end{aligned}$$
(38)

Below we evaluate \(\Delta (I_0,h_0)\) defined by (1), where \(h_0=\pi /2\) (shown by grey line in Fig. 2a) and consider \(0\le I_0\le \pi /2\). Since D is large compared with \(\alpha \) and \(\beta \), the nutation angle \(I(h')\) is close to \(I_0\) and we can write \(I(h')=I_0+I_1(h')\). Therefore,

$$\begin{aligned} \sin ^2I\approx \sin ^2I_0+I_1\sin 2I_0+I_1^2\cos 2I_0,\quad \sin 2I\approx \sin 2I_0+2I_1\cos 2I_0. \end{aligned}$$

Since \({\tilde{{{\mathcal {G}}}}}(I,h')\) is a constant on trajectories, substituting the above expressions into (26) we obtain a quadratic equation on \(I_1(h')\)

$$\begin{aligned} \begin{array}{l} I_1^2(-D\cos 2I_0)+I_1(-D\sin 2I_0+2\beta \cos 2I_0\cos (h'+\gamma ))+\\ \alpha \sin ^2I_0(\cos 2h'-1)+\beta \sin 2I_0(\cos (h'+\gamma )+\sin \gamma )=0. \end{array} \end{aligned}$$
(39)

The range \(\Delta \) is a continuous function of \(I_0\) and \(h_0\) inside a region and is discontinuous at a boundary. For a heteroclinic trajectory through \((\pi /2,0)\), we have

$$\begin{aligned} {\tilde{{{\mathcal {G}}}}}(I,h')=(-D+\alpha ), \end{aligned}$$

hence trajectories with the initial conditions \((I_0,\pi /2)\) such that

$$\begin{aligned} \sin ^2I_0(-D-\alpha )+\beta \sin 2I_0\sin \gamma <-D+\alpha \end{aligned}$$
(40)

belong to the equatorial regions, while the other ones to the polar regions. Since \(D\gg \max (\alpha ,\beta )\), the inequality (40) may be simplified to

$$\begin{aligned} |I_0-{\pi \over 2}|<\biggl ({2\alpha \over D}\biggr )^{1/2}, \end{aligned}$$
(41)

i.e. the trajectories through \((I_0,\pi /2)\) belong to an equatorial region if \(\pi /2-\delta _{het}<I_0<\pi /2+\delta _{het}\), where \(\delta _{het}=(2\alpha /D)^{1/2}\), and to a polar one otherwise.

To solve Eq. (39) we consider three possibilities for \(I_0\) if the initial condition \((I_0,h_0)\) belongs to the polar region:

  1. (i)

    \(D^{1/2}|\sin I_0|<\beta ^{1/2}\), \(|\sin I_0|<|\cos I_0|\);

  2. (ii)

    \(D^{1/2}\sin ^2I_0>\max (\alpha ,\beta ^{1/2}|\sin I_0|)\);

  3. (iii)

    \(D^{1/2}\sin ^2I_0<\alpha ^{1/2}\), \(|\sin I_0|>|\cos I_0|\), \(|I_0-{\pi \over 2}|>(2\alpha )^{1/2}D^{-1/2}\).

and the equatorial region:

  1. (iv)

    \(|I_0-{\pi \over 2}|<(2\alpha )^{1/2}D^{-1/2}\).

Since \(D\gg \beta \), in case (i) we have that \(I_0\) is close to 0 or \(\pi \). Therefore, from (38) the extrema of \(I(h')\) take place at \(\sin (h'+\gamma )\approx 0\). Substituting \(h'+\gamma =0\) and \(\pi \) into (39), solving the quadratic equation and subtracting the root at \(h'+\gamma =0\) from the one at \(h'+\gamma =\pi \) we find that

$$\begin{aligned} \Delta \approx {2\beta \over D}. \end{aligned}$$
(42)

In case (ii) in Eq. (39), the quadratic term can be neglected and the remaining linear equation can be easily solved for any value of \(h'\). We cannot derive from (38) the particular value of \(h'\) where the maxima and minima take place; hence, we give upper and lower bound for \(\Delta \) (they differ less than a factor 2):

$$\begin{aligned} {\max (|\alpha |\sin I_0,2|\beta |\cos I_0)\over D\cos I_0}<\Delta \le {|\alpha |\sin I_0+2|\beta |\cos I_0\over D\cos I_0}. \end{aligned}$$
(43)

Alternatively, we introduce the function

$$\begin{aligned} \chi (I_0,\alpha ,\beta ,\gamma )= \max _{0\le h\le 2\pi }f(I_0,\alpha ,\beta ,\gamma ,h)- \min _{0\le h\le 2\pi }f(I_0,\alpha ,\beta ,\gamma ,h) \end{aligned}$$
(44)

where

$$\begin{aligned} f(I_0,\alpha ,\beta ,\gamma ,h)=\alpha \sin ^2I_0\cos 2h+\beta \sin 2I_0\cos (h+\gamma ). \end{aligned}$$
(45)

Then

$$\begin{aligned} \Delta (I_0,h_0)\approx {\chi (I_0,\alpha ,\beta ,\gamma )\over D\cos I_0}. \end{aligned}$$
(46)

As we noted \(D\gg \alpha \), therefore in case (iii) we have that \(I_0\approx \pi /2\). Hence (see (38)), the minima of \(I(h')\) take place at \(h'=0\) and \(\pi \) and the maxima at \(h'=\pi /2\) and \(3\pi /2\). Solving (39) we obtain that

$$\begin{aligned} \Delta \approx {D\sin 2I_0-\beta \cos 2I_0\cos \gamma + ((-D\sin 2I_0+\beta \cos 2I_0\cos \gamma )^2+8D\alpha )^{1/2}\over 2D}. \end{aligned}$$
(47)

In case (iv) a trajectory twice intersects the meridian \(h'=\pi /2\), at the intersection points I takes the maximum and minimum values, \(I_{\max }\) and \(I_{\min }\), for this particular trajectory (see (38)). Moreover, (39) implies that \(I_{\max }-\pi /2\approx \pi /2-I_{\min }\). Hence,

$$\begin{aligned} \Delta \approx 2|\pi /2-I_0|. \end{aligned}$$
(48)

Overall, for \(0\le I_0\le \pi /2\) we have

$$\begin{aligned} \begin{array}{lll} \hbox { case } &{} I_0 &{} \Delta \\ \hline (i) &{} D^{1/2}|\sin I_0|<\beta ^{1/2} &{} \hbox { equation }(42) \\ (ii) &{} D^{1/2}\sin ^2I_0>\max (\alpha ,\beta ^{1/2}|\sin I_0|) &{} \hbox { inequality }(43) \\ &{}&{}\hbox { or equation }(46) \\ (iii) &{} D^{1/2}\sin ^2I_0<\alpha ^{1/2},\ |I_0-{\pi \over 2}|>(2\alpha )^{1/2}(D')^{-1/2} &{} \hbox { equation }(47) \\ (iv) &{} |I_0-{\pi \over 2}|<(2\alpha )^{1/2}D^{-1/2} &{} \hbox { equation} (48) \end{array} \end{aligned}$$
(49)

Remark 2

We have calculated \(\Delta (I_0,h_0)\) for \(h_0=\pi /2\) only. Unless \(I_0\) is close to \(\pi /2\), the dependence of \(\Delta \) on \(h_0\) is marginal, as illustrated by Fig. 2a. By contrast, near \(I_0=\pi /2\) the range essentially depends on \(h_0\). For example, for an initial condition corresponding to a saddle steady state the range vanishes, while for a slightly perturbed initial condition one can get \(\Delta \)’s close to \(2\delta _{het}\) (inside the equatorial region) or \(\delta _{het}\) (inside the polar region), see in Fig. 2a. Investigation of the dependence of \(\Delta (I_0,h_0)\) on \(h_0\) for \(I_0\) near \(\pi /2\), which can be carried out similarly, is left for future studies.

The canonical change of variables employed in Sect. 4.3

Let the functions \(D_j(t)\) in the averaged Eqs. (18), (19) be represented as the sums

$$\begin{aligned} D_j=D_j^*+D^{(2)}_j,\ \quad D_j^*=D_j^{(1)}+\sum _{k=3}^n D_j^{(k)}, \end{aligned}$$

where \(D_j^{(1)}\) (21) result from the torque from the Sun, \(D^{(2)}_j\) (24) from the Moon and \(D_j^{(3)},\ldots ,D_j^{(n)}\) from the planets. As discussed in Sect. 2, the terms \(D_j^*\) are time-independent.

The mean Hamiltonian takes the form

$$\begin{aligned} \begin{array}{l} {{\overline{{{\mathcal {H}}}}}}_1={\displaystyle -{3\varepsilon \over 2}(C_1-A_1)[ \sin ^2I(-(D_1^*+D_1^{(2)})\sin ^2h-(D_2^*+D_2^{(2)})\cos ^2h}\\ +(D_3^*+D_3^{(2)})+(D_4^*+D_4^{(2)})\sin (2h))- \sin 2I((D_5^*+D_5^{(2)})\sin h-(D_6^*+D_6^{(2)})\cos h)]. \end{array} \end{aligned}$$
(50)

Substitution of (24) and (29) into (50) followed by a series of algebraic transformations yield

$$\begin{aligned} \begin{array}{l} {{\overline{{{\mathcal {H}}}}}}_1= {\displaystyle -{3\varepsilon \over 2}(C_1-A_1)[ (-D_1^*\sin ^2h-D_2^*\cos ^2h+D_3^*+D_4^*\sin (2h)+}\\ {\displaystyle \Xi ({1\over 2}\sin ^2i-\cos ^2i)+{\Xi \over 2}\sin ^2i\cos (2\Omega -2h)) \sin ^2I-}\\ {\displaystyle (D_5^*\sin h-D_6^*\cos h +{\Xi \over 2}\sin 2i\cos (\Omega -h))\sin 2I]}. \end{array} \end{aligned}$$
(51)

Using the generating function \(F_2(h,H')=H'(h-\Omega _0-\sigma _\mathrm{n}t)\), we obtain that in the canonical coordinates \((H',h')=(H,h-\Omega _0-\sigma _\mathrm{n}t)\) the Hamiltonian (51) takes the form

$$\begin{aligned} {{\mathcal {H}}}'={{\overline{{{\mathcal {H}}}}}}_1+{\partial F_2\over \partial t}= {{\overline{{{\mathcal {H}}}}}}_1-\sigma _\mathrm{n}H'. \end{aligned}$$

Therefore, (10), (11) imply that

$$\begin{aligned} {\,\mathrm{d}\,h'\over \,\mathrm{d}\,t}={\rho \over \sin I} {\partial {{\mathcal {G}}}'\over \partial I},\qquad {\,\mathrm{d}\,I\over \,\mathrm{d}\,t}=-{\rho \over \sin I} {\partial {{\mathcal {G}}}'\over \partial h'}, \end{aligned}$$
(52)

where

$$\begin{aligned} \begin{array}{l}{\displaystyle {{\mathcal {G}}}'(I,h')=\sin ^2I (-D_1^*\sin ^2h'-D_2^*\cos ^2h'+D_3^*+D_4^*\sin (2h')+}\\ {\displaystyle \Xi ({1\over 2}\sin ^2i-\cos ^2i)+{\Xi \over 2}\sin ^2i\cos 2h')+}\\ {\displaystyle \sin 2I(D_5^*\sin h'-D_6^*\cos h'+ {\Xi \over 2}\sin 2i\cos h')+{\sigma _\mathrm{n}\over \rho }\cos I} \end{array} \end{aligned}$$
(53)

and \(\rho =3\varepsilon (C_1-A_1)/2G\). In the new variables \((H,h')\), we have that \({{\mathcal {G}}}'=const\) along the trajectories. Note that the Eq. (53) is invariant under the symmetry \(h'\rightarrow -h'\)

$$\begin{aligned} {{\mathcal {G}}}'(I,h')={{\mathcal {G}}}'(I,-h'). \end{aligned}$$
(54)

The equation is also invariant after the transformation\((\sigma _\mathrm{n},I,h')\rightarrow (-\sigma _\mathrm{n},\pi -I,h'+\pi )\), therefore without the loss of generality we consider non-negative \(\sigma _\mathrm{n}\)’s only.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podvigina, O.M., Krasilnikov, P.S. Impact of a moon on the evolution of a planet’s rotation axis: a non-resonant case. Celest Mech Dyn Astron 134, 21 (2022). https://doi.org/10.1007/s10569-022-10077-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-022-10077-5

Keywords

Navigation