Skip to main content
Log in

From the Lagrange polygon to the figure eight I

Numerical evidence extending a conjecture of Marchal

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The present work studies the continuation class of the regular n-gon solution of the n-body problem. For odd numbers of bodies between \(n = 3\) and \(n = 15\), we apply one parameter numerical continuation algorithms to the energy/frequency variable and find that the figure eight choreography can be reached starting from the regular n-gon. The continuation leaves the plane of the n-gon and passes through families of spatial choreographies with the topology of torus knots. Numerical continuation out of the n-gon solution is complicated by the fact that the kernel of the linearization there is high dimensional. Our work exploits a symmetrized version of the problem which admits dense sets of choreography solutions and which can be written as a delay differential equation in terms of one of the bodies. This symmetrized setup simplifies the problem in several ways. On the one hand, the direction of the kernel is determined automatically by the symmetry. On the other hand, the set of possible bifurcations is reduced and the n-gon continues to the eight after a single symmetry breaking bifurcation. Based on the calculations presented here, we conjecture that the n-gon and the eight are in the same continuation class for all odd numbers of bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arioli, G., Barutello, V., Terracini, S.: A new branch of Mountain Pass solutions for the choreographical 3-body problem. Commun. Math. Phys. 268(2), 439–463 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • Arioli, G., Koch, H.: Computer-assisted methods for the study of stationary solutions in dissipative systems, applied to the Kuramoto–Sivashinski equation. Arch. Ration. Mech. Anal. 197(3), 1033–1051 (2010)

    Article  MathSciNet  Google Scholar 

  • Barutello, V., Ferrario, D.L., Terracini, S.: Symmetry groups of the planar three-body problem and action-minimizing trajectories. Arch. Ration. Mech. Anal. 190(2), 189–226 (2008)

    Article  MathSciNet  Google Scholar 

  • Barutello, V., Terracini, S.: Action minimizing orbits in the \(n\)-body problem with simple choreography constraint. Nonlinearity 17(6), 2015–2039 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  • Burgos-García, J.: Families of periodic orbits in the planar Hill’s four-body problem. Astrophys. Space Sci. 361(11), 1–21 (2016)

    Article  MathSciNet  Google Scholar 

  • Calleja, R.C.: Anamations of some choreographies (2020). https://mym.iimas.unam.mx/renato/choreographies/Marchal.html

  • Calleja, R., Doedel, E., García-Azpeitia, C.: Symmetries and choreographies in families that bifurcate from the polygonal relative equilibrium of the \(n\)-body problem. Celest. Mech. Dynam. Astronom. 130(7), 1–28 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  • Calleja, R., García-Azpeitia, C., Lessard, J.-P., Mireles James, J.D.: Torus knot choreographies in the \(n\)-body problem. Nonlinearity 34(1), (2021). https://iopscience.iop.org/article/10.1088/1361-6544/abcb08

  • Chenciner, A.: Four lectures on the \(N\)-body problem. In: Hamiltonian Dynamical Systems and Applications, NATO Sci. Peace Secur. Ser. B Phys. Biophys., pp. 21–52. Springer, Dordrecht (2008)

  • Chenciner, A.: Poincaré and the three-body problem. In: Henri Poincaré, 1912–2012, Volume 67 of Prog. Math. Phys., pp. 51–149. Birkhäuser/Springer, Basel (2015)

  • Chenciner, A., Féjoz, J.: The flow of the equal-mass spatial 3-body problem in the neighborhood of the equilateral relative equilibrium. Discrete Cont. Dyn. Syst. Ser. B 10(2–3), 421–438 (2008)

    Article  MathSciNet  Google Scholar 

  • Chenciner, A., Féjoz, J.: Unchained polygons and the \(N\)-body problem. Regul. Chaotic Dyn. 14(1), 64–115 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  • Chenciner, A., Gerver, J., Montgomery, R., Simó, C.: Simple choreographic motions of \(N\) bodies: a preliminary study. In: Geometry, Mechanics, and Dynamics, pp. 287–308. Springer, New York (2002)

  • Chenciner, A., Montgomery, R.: A remarkable periodic solution of the three-body problem in the case of equal masses. Ann. Math. (2) 152(3), 881–901 (2000)

    Article  MathSciNet  Google Scholar 

  • Darwin, G.H.: Periodic orbits. Acta Math. 21(1), 99–242 (1897)

    Article  MathSciNet  Google Scholar 

  • Doedel, E., Keller, H.B., Kernévez, J.-P.: Numerical analysis and control of bifurcation problems. I. Bifurcation in finite dimensions. Int. J. Bifur. Chaos Appl. Sci. Eng. 1(3), 493–520 (1991)

    Article  MathSciNet  Google Scholar 

  • Féjoz, J.: Periodic and quasi-periodic motions in the many-body problem dynamical systems [math.ds]. Mémoire D’Habilitation, Université Perre et Marie Curie—Paris VI (2010)

  • Ferrario, D.L., Terracini, S.: On the existence of collisionless equivariant minimizers for the classical \(n\)-body problem. Invent. Math. 155(2), 305–362 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  • Gameiro, M., Lessard, J.-P., Mischaikow, K.: Validated continuation over large parameter ranges for equilibria of PDEs. Math. Comput. Simul. 79(4), 1368–1382 (2008)

    Article  MathSciNet  Google Scholar 

  • García-Azpeitia, C., Ize, J.: Global bifurcation of polygonal relative equilibria for masses, vortices and dNLS oscillators. J. Differ. Equ. 251(11), 3202–3227 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  • García-Azpeitia, C., Ize, J.: Global bifurcation of planar and spatial periodic solutions from the polygonal relative equilibria for the \(n\)-body problem. J. Differ. Equ. 254(5), 2033–2075 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  • Hoppe, R.: Erweiterung der bekannten speciallösung des dreikörperproblems. Arch. Math. Phys. 64(218) (1879)

  • Jaquette, J.: A proof of Jones’ conjecture. J. Differ. Equ. 266(6), 3818–3859 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • Jaquette, J., Lessard, J.-P., Mischaikow, K.: Stability and uniquness of slowly oscillating periodic solutions to wright’s equation. J. Differ. Equ. 11, 7263–7286 (2017)

    Article  ADS  Google Scholar 

  • Kapela, T.: \(N\)-Body choreographies with a reflectional symmetry—computer assisted existence proofs. In: EQUADIFF 2003, pp. 999–1004. World Scientific Publishing, Hackensack (2005)

  • Kapela, T., Simó, C.: Computer assisted proofs for nonsymmetric planar choreographies and for stability of the eight. Nonlinearity 20(5), 1241–1255 (2007). With multimedia enhancements available from the abstract page in the online journal

    Article  ADS  MathSciNet  Google Scholar 

  • Kapela, T., Simó, C.: Rigorous KAM results around arbitrary periodic orbits for Hamiltonian systems. Nonlinearity 30(3), 965–986 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  • Kapela, T., Zgliczyński, P.: The existence of simple choreographies for the \(N\)-body problem-a computer-assisted proof. Nonlinearity 16(6), 1899–1918 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  • Keller, H.B.: Lectures on Numerical Methods in Bifurcation Problems, Volume 79 of Tata Institute of Fundamental Research Lectures on Mathematics and Physics. Published for the Tata Institute of Fundamental Research, Bombay (1987). With notes by A. K. Nandakumaran and Mythily Ramaswamy

  • Lagrnge, J.L.: Essai sur le probléme des trois corps. Euvres 6:229–331 (1772)

  • Lessard, J.-P.: Validated Continuation for Infinite Dimensional Problems. Thesis (Ph.D.)–Georgia Institute of Technology, ProQuest LLC, Ann Arbor (2007)

  • Lessard, J.-P.: Continuation of solutions and studying delay differential equations via rigorous numerics. In: Rigorous Numerics in Dynamics, Volume 74 of Proc. Sympos. Appl. Math., pp. 81–122. American Mathematical Society, Providence (2018)

  • Lessard, J.-P., Sander, E., Wanner, T.: Rigorous continuation of bifurcation points in the diblock copolymer equation. J. Comput. Dyn. 4(1–2), 71–118 (2017)

    MathSciNet  MATH  Google Scholar 

  • Meyer, K.R., Hall, G.R., Offin, D.: Introduction to Hamiltonian dynamical systems and the \(N\)-body problem, Volume 90 of Applied Mathematical Sciences, 2nd edn. Springer, New York (2009)

  • Moore, C.: Braids in classical gravity. Phys. Rev. Lett. 70, 3675–3679 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  • Moser, J.: Stable and random motions in dynamical systems. In: Princeton Landmarks in Mathematics. Princeton University Press, Princeton (2001). With special emphasis on celestial mechanics, Reprint of the 1973 original. With a foreword by Philip J, Holmes

  • Moulton, F.R.: Differential Equations. Dover, New York (1958)

    MATH  Google Scholar 

  • Perko, L.M., Walter, E.L.: Regular polygon solutions of the \(N\)-body problem. Proc. Am. Math. Soc. 94(2), 301–309 (1985)

    MathSciNet  MATH  Google Scholar 

  • Poincaré, H.: Les méthodes nouvelles de la mécanique céleste. Tome I. Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics]. Librairie Scientifique et Technique Albert Blanchard, Paris, 1987. Solutions périodiques. Non-existence des intégrales uniformes. Solutions asymptotiques. [Periodic solutions. Nonexistence of uniform integrals. Asymptotic solutions], Reprint of the 1892 original, With a foreword by J. Kovalevsky, Bibliothèque Scientifique Albert Blanchard. [Albert Blanchard Scientific Library]

  • Poincaré, H.: Les méthodes nouvelles de la mécanique céleste. Tome II. Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics]. Librairie Scientifique et Technique Albert Blanchard, Paris, 1987. Méthodes de MM. Newcomb, Gyldén, Lindstedt et Bohlin. [The methods of Newcomb, Gyldén, Lindstedt and Bohlin], Reprint of the 1893 original, Bibliothèque Scientifique Albert Blanchard. [Albert Blanchard Scientific Library]

  • Poincaré, H.: Les méthodes nouvelles de la mécanique céleste. Tome III. Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics]. Librairie Scientifique et Technique Albert Blanchard, Paris, 1987. Invariant intégraux. Solutions périodiques du deuxième genre. Solutions doublement asymptotiques. [Integral invariants. Periodic solutions of the second kind. Doubly asymptotic solutions], Reprint of the 1899 original, Bibliothèque Scientifique Albert Blanchard. [Albert Blanchard Scientific Library]

  • Simó, C.: New families of solutions in \(N\)-body problems. In: European Congress of Mathematics, Vol. I (Barcelona, 2000), Volume 201 of Progr. Math., pp. 101–115. Birkhäuser, Basel (2001)

  • Simó, C.: Dynamical properties of the figure eight solution of the three-body problem. In: Celestial Mechanics (Evanston, IL, 1999), Volume 292 of Contemp. Math., pp. 209–228. American Mathematical Society, Providence (2002)

  • Strömgren, E.: Connaissance actuelle des orbites dans le probleme des trois corps. Bull. Astronom. 9(2), 87–130 (1933)

    ADS  MATH  Google Scholar 

  • Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York (1967)

    MATH  Google Scholar 

  • Terracini, S.: Venturelli, A.: Symmetric trajectories for the \(2N\)-body problem with equal masses. Arch. Ration. Mech. Anal. 184(3), 465–493 (2007)

  • van den Berg, J.B., Lessard, J.-P., Mischaikow, K.: Global smooth solution curves using rigorous branch following. Math. Comput. 79(271), 1565–1584 (2010)

    Article  MathSciNet  Google Scholar 

  • van den Berg, J.B., Jaquette, J.: A proof of Wright’s conjecture. J. Differ. Equ. 264(12), 7412–7462 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  • van den Berg, J.B., Queirolo, E.: A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. J. Comput. Dyn. 8, 59–97 (2021)

    Article  MathSciNet  Google Scholar 

  • Wanner, T.: Computer-assisted bifurcation diagram validation and applications in materials science. In: Rigorous Numerics in Dynamics, Volume 74 of Proc. Sympos. Appl. Math., pp. 123–174. American Mathematical Society, Providence (2018)

  • Wulff, C., Schebesch, A.: Numerical continuation of Hamiltonian relative periodic orbits. J. Nonlinear Sci. 18(4), 343–390 (2008)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Mireles James.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

RC was partially supported by UNAM-PAPIIT project IN101020. CGA was partially supported by UNAM-PAPIIT Grant IA100121. JPL was partially supported by an NSERC Discovery Grant. JDMJ was partially supported by NSF Grant DMS-1813501.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calleja, R., García-Azpeitia, C., Lessard, JP. et al. From the Lagrange polygon to the figure eight I. Celest Mech Dyn Astr 133, 10 (2021). https://doi.org/10.1007/s10569-021-10009-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-021-10009-9

Keywords

Mathematics Subject Classification

Navigation