Skip to main content
Log in

On a set of J\(_2\) equinoctial orbital elements and their use for uncertainty propagation

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

This paper defines a set of six non-singular orbital elements designed specifically for the characterization of uncertainty in the state of a resident space object in circular or elliptic orbit and demonstrates their use for uncertainty propagation in the context of the perturbed two-body problem of orbital mechanics. As evidenced by the time evolution of the Cramér–von Mises test statistic, representation of the orbital state probability density function in J\(_2\)EqOE yields less nonlinear uncertainty propagation and provides covariance and uncertainty realism for much longer periods of time than what is possible using Cartesian coordinates or even equinoctial orbital elements, without an appreciable increase in computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Covariance realism is the proper characterization of the covariance in the state of a system under Gaussian assumptions. It implies that the estimate of the mean is the true mean (i.e., the estimate is unbiased) and that the covariance possesses the right size, shape, and orientation (i.e., consistency). Uncertainty realism relaxes the Gaussian assumptions. Covariance realism is a necessary but not sufficient condition for achieving uncertainty realism. An extensive study on covariance and uncertainty realism in the SSA domain is provided in the report of Poore et al. (2016).

  2. More than 25% of cataloged space objects have eccentricities less than \(10^{-3}\) and nearly 2% have eccentricities less than \(10^{-4}\) (Space-Track.Org 2020).

  3. Lyddane’s algorithm contains an intrinsic singularity because the final output is the Keplerian elements.

  4. Brouwer’s algorithm contains explicit singularities for zero eccentricity and zero inclination.

  5. Suppose \(\theta _1\) and \(\theta _2\) are two angles equivalent up to integer \(2\pi \) shifts. Let \(b_{cut} = \theta _1 - \pi \), and redefine \(\theta _2\) according to \(\theta _2 = \theta _2 + 2\pi \lceil (b_{cut} - \theta _2)/(2\pi )\rceil \). Then, \(\theta _1\) and \(\theta _2\) can be safely added or subtracted.

  6. The geocoefficients are taken from the 2008 Earth gravity model (Pavlis et al. 2008).

  7. High-precision ephemerides (DE405) from the Jet Propulsion Laboratory’s HORIZONS system are used for determining the position of the Sun and Moon.

  8. Note that the orbital propagations themselves are performed in Cartesian space; however, the PDF need not be represented in Cartesian coordinates.

  9. The Mahalanobis distance is given by

    $$\begin{aligned} {\mathcal {M}}^{(i)}(\varvec{x}^{(i)}; \varvec{\mu }, \mathbf {P}) = (\varvec{x}^{(i)} - \varvec{\mu })^{T} \mathbf {P}^{-1} (\varvec{x}^{(i)} - \varvec{\mu }), \end{aligned}$$
    (13)

    where \(\mu \) is the n-dimensional state estimate, and \(\mathbf {P}\) the n by n covariance matrix. The expected value of \({\mathcal {M}}\) is n, and it follows that \({\mathcal {M}} \sim \chi ^{2}(n)\), i.e., \({\mathcal {M}}\) is chi-squared distributed with n degrees of freedom.

  10. The Cramér–von Mises test statistic is given by

    $$\begin{aligned} Q = \frac{1}{12k} + \sum _{i=1}^{k} \left[ \frac{2i-1}{2k} - F(y^{(i)}) \right] ^{2}, \end{aligned}$$
    (14)

    where the \(y^{(i)}\), \(i = 1, \ldots , k\), are the observed samples in increasing order, and F is the cumulative distribution function of the target distribution. Further details are given in Horwood et al. (2014b).

  11. Conceivably, the tests described in this section could be performed in other systems of Cartesian coordinates, such as the perifocal PQW coordinates or the RSW or NTW satellite coordinate systems (Vallado 2013). However, because any two Cartesian frames are related by an affine transformation (i.e., a rotation and translation), the same results would be obtained if one used a different Cartesian coordinate system.

References

  • Aristoff, J.M., Horwood, J.T., Poore, A.B.: Orbit and uncertainty propagation: a comparison of Gauss–Legendre-, Dormand–Prince-, and Chebyshev–Picard-based approaches. Celest. Mech. Dyn. Astron. 118, 13–28 (2014a)

    Article  ADS  Google Scholar 

  • Aristoff, J.M., Horwood, J.T., Singh, N., Poore, A.B.: Non-linear uncertainty propagation in orbital elements and transformation to Cartesian space without loss of realism. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, San Diego, CA (2014b)

  • Aristoff, J.M., Horwood, J.T., Poore, A.B.: Implicit Runge–Kutta-based methods for fast, precise, and scalable uncertainty propagation. Celest. Mech. Dyn. Astron. 122, 169–182 (2015a)

    Article  ADS  MathSciNet  Google Scholar 

  • Aristoff J.M., Horwood, J.T., Poore, A.B.: Propagation of uncertainty in support of SSA missions. In: Proceedings of the 25th AAS/AIAA Space Flight Mechanics Meeting, Williamsburg, VA, Paper AAS 15-332 (2015b)

  • Broucke, R.A., Cefola, P.J.: On the equinoctial orbit elements. Celest. Mech. 5, 303–310 (1972)

    Article  ADS  Google Scholar 

  • Brouwer, D.: Solution of the problem of artificial satellite theory without drag. Astron. J. 64(1274), 378–396 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  • Cain, B.J.: Determination of mean elements for Brouwer’s satellite theory. Astron. J. 67(6), 391–392 (1962)

    Article  ADS  Google Scholar 

  • DeMars, K.J., Jah, M.K., Cheng, Y., Bishop, R.H.: Methods for splitting Gaussian distributions and applications within the AEGIS filter. In: Proceedings of the 22nd AAS/AIAA Space Flight Mechanics Meeting, Charleston, SC, Paper AAS-12-261 (2012)

  • Gim, D.W., Alfriend, K.T.: Satellite relative motion using differential equinoctial elements. Celest. Mech. Dyn. Astron. 92(4), 295–336 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • Horwood, J.T., Poore, A.B.: Adaptive Gaussian sum filters for space surveillance. IEEE Trans. Autom. Control 56(8), 1777–1790 (2011)

    Article  MathSciNet  Google Scholar 

  • Horwood, J.T., Poore, A.B.: Gauss von Mises distribution for improved uncertainty realism in space situational awareness. SIAM J. Uncertain. Quantif. 2, 276–304 (2014)

    Article  MathSciNet  Google Scholar 

  • Horwood, J.T., Aragon, N.D., Poore, A.B.: Gaussian sum filters for space surveillance: theory and simulations. J. Guidance Control Dyn. 34(6), 1839–1851 (2011)

    Article  ADS  Google Scholar 

  • Horwood J.T., Aristoff, J.M., Singh, N., Poore, A.B.: A comparative study of new non-linear uncertainty propagation methods for space surveillance. In: Drummond, O.E. (ed.) SPIE Proceedings: Signal and Data Processing of Small Targets, vol. 9092 (2014a)

  • Horwood, J.T., Aristoff, J.M., Singh, N., Poore, A.B., Hejduk, M.D.: Beyond covariance realism: a new metric for uncertainty realism. In Drummond, O.E. (ed.) SPIE Proceedings: Signal and Data Processing of Small Targets, vol. 9092 (2014b)

  • Horwood, J.T., Singh, N., Aristoff, J.M., Bhopale, A.: KRATOS: Kollision risk assessment tool in orbital element spaces. In: Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Wailea, HI (2016)

  • Jazwinski, A.H.: Stochastic Processes and Filtering Theory. Dover, New York (1970)

    MATH  Google Scholar 

  • Julier, S.J., Uhlmann, J.K., Durant-Whyte, H.F.: A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Control 55, 477–482 (2000)

    Article  MathSciNet  Google Scholar 

  • Lyddane, R.H.: Small eccentricities or inclinations in the Brouwer theory of the artificial satellite. Astron. J. 68(8), 555–558 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  • Montenbruck, O., Gill, E.: Satellite Orbits: Models, Methods, and Applications, 2nd edn. Springer, Berlin (2005)

    MATH  Google Scholar 

  • Neelon J.G., Cefola, P.J., Proulx, R.J.: Current development of the Draper semianalytical satellite theory standalone orbit propagator package. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Sun Valley, ID. Paper AAS 97-731 (1997)

  • Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K.: An Earth gravitational model to degree 2160: EGM2008. In: Proceedings of the European Geosciences Union General Assembly, Vienna, Austria (2008)

  • Poore, A.B., Aristoff, J.M., Horwood, J.T.: Covariance and uncertainty realism in space surveillance and tracking. Technical Report AD102089. https://apps.dtic.mil/dtic/tr/fulltext/u2/1020892.pdf. Astrodynamics Innovations Committee (AIC) Working Group on Covariance Realism (2016)

  • Space-Track.Org. https://www.space-track.org. Accessed 9 July 2020

  • Terejanu, G., Singla, P., Singh, T., Scott, P.D.: Uncertainty propagation for nonlinear dynamic systems using Gaussian mixture models. J. Guidance Control Dyn. 31(6), 1623–1633 (2008)

    Article  ADS  Google Scholar 

  • Vallado, D.A.: Fundamentals of Astrodynamics and Applications. Microcosm, Hawthorne (2013)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Navraj Singh and Alex Ferris for assistance with the simulation studies. This work was funded, in part, by a Phase II STTR from the Air Force Office of Scientific Research (FA9550-12-C-0034) and by a Phase I and a Phase II SBIR from the Air Force Research Laboratory Space Vehicles Directorate (FA9453-15-M-0482, FA8650-19-C-9205). This work was cleared for public release (case number AFMC-2019-0691).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua T. Horwood.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Numerical example

Appendix: Numerical example

To assist the reader in an implementation of the J\(_2\)EqOE to EqOE conversion (and its inverse), we provide details of how to recover the Keplerian orbital elements for the LEO example presented in Table 1 following all of the intermediate steps described in Sect. 2.

The following values are assumed for the gravitational parameter \(\mu \), Earth radius R, and \(J_2\) coefficient:

$$\begin{aligned} \mu&= 3.986004415 \text {e+05}\, \text {km}^{3}/\text {s}^{2} \\ R&= 6.378137 \text {e+03}\, \text {km} \\ J_{2}&= 1.0826261738522 \text {e-03} \end{aligned}$$

The input J\(_2\)EqOE are the following:

$$\begin{aligned} n''&= 1.0487861550167\mathrm{e} {-}{03}\, \text {s}^{-1}&\qquad p''&= 6.6371635585001\mathrm{e} {-}{01} \\ h''&= 1.4260897234681\mathrm{e} {-}{03}&\qquad q''&= -3.2380704393120\mathrm{e} {-}{01} \\ k''&= -9.2912382513865\mathrm{e} {-}{03}&\qquad \ell ''&= 4.8735182761240\mathrm{e} {+}{00} \end{aligned}$$

In what follows, all angular quantities have implied units of radians.

1.1 J\(_2\)EqOE to J\(_2\)IOE Conversion

$$\begin{aligned} I''_{1}&= 7.1294270251742 \text {e+03}\, \text {km}&\qquad I''_{4}&= 5.3390774990364\mathrm{e} {-}{01} \\ I''_{2}&= 8.9420945754925\mathrm{e} {-}{03}&\qquad I''_{5}&= -2.6047736914253\mathrm{e} {-}{01} \\ I''_{3}&= -2.8982382142187\mathrm{e} {-}{03}&\qquad I''_{6}&= 4.8735182761240 \text {e+00} \end{aligned}$$

1.2 J\(_2\)IOE to IOE Conversion: Step 1

$$\begin{aligned} a''&= 7.1294270251742 \text {e+03}\, \text {km}&\qquad h''&= 2.0246926216394 \text {e+00} \\ e''&= 9.4000446883730\mathrm{e} {-}{03}&\qquad g''&= 9.6460100038126\mathrm{e} {-}{01} \\ I''&= 1.2721904014791 \text {e+00}&\qquad l''&= 1.8842246541034 \text {e+00} \end{aligned}$$

1.3 J\(_2\)IOE to IOE Conversion: Step 2

$$\begin{aligned} k&= 2.2020958264503 \text {e+04}\, \text {km}^{2}&\qquad \gamma&= 4.3323841440301\mathrm{e} {-}{04} \\ \eta&= 9.9995581860393\mathrm{e} {-}{01}&\qquad \gamma '&= 4.3331498717247\mathrm{e} {-}{04} \\ \theta&= 2.9418810951484\mathrm{e} {-}{01} \end{aligned}$$

1.4 J\(_2\)IOE to IOE Conversion: Step 3

$$\begin{aligned} E''&= 1.8931405532060 \text {e+00} \end{aligned}$$

1.5 J\(_2\)IOE to IOE Conversion: Step 4

$$\begin{aligned} r''&= 7.1506573807183 \text {e+03}\, \text {km}&\qquad f''&= 1.9020433345198 \text {e+00} \end{aligned}$$

1.6 J\(_2\)IOE to IOE Conversion: Step 5

$$\begin{aligned} a&= 7.1366000000000 \text {e+03}\, \text {km}&\qquad \delta h&= -1.1070091328349\mathrm{e} {-} {04} \end{aligned}$$

1.7 J\(_2\)IOE to IOE Conversion: Step 6

$$\begin{aligned} l + g + h&= 4.8729592715682 \text {e+00} \end{aligned}$$

1.8 J\(_2\)IOE to IOE Conversion: Step 7

$$\begin{aligned} \nu _{1}&= -9.7268781528180 \mathrm{e}{-}{01}&\qquad \delta e&= 8.1222972039185\mathrm{e} {-}{05} \\ \nu _{2}&= -9.5884220957866\mathrm{e} {-}{01}&\qquad e'' \delta l&= -4.0701787616281\mathrm{e} {-}{04} \\ \nu _{3}&= -9.6354316647622\mathrm{e} {-}{01}&\\ \nu _{4}&= 1.9910139555114 \mathrm{e}{+00} \end{aligned}$$

1.9 J\(_2\)IOE to IOE Conversion: Step 8

$$\begin{aligned} \delta I&= 1.5460976151790 \mathrm{e}{-}04&\qquad \sin \left( \tfrac{1}{2}I''\right) \delta h&= -6.5762859846059\mathrm{e} {-}{05} \end{aligned}$$

1.10 J\(_2\)IOE to IOE Conversion: Step 9

$$\begin{aligned} I_{1}&= 7.1366000000000 \text {e+03}\, \text {km}&\qquad I_{4}&= 5.3399247411729\mathrm{e} {-}{01} \\ I_{2}&= 9.1448530009497\mathrm{e} {-}{03}&\qquad I_{5}&= -2.6044553167591\mathrm{e} {-}{01} \\ I_{3}&= -2.5360921889622\mathrm{e} {-}{03}&\qquad I_{6}&= 4.8729592715682 \text {e+00} \end{aligned}$$

1.11 IOE to EqOE Conversion

$$\begin{aligned} a&= 7.1366000000000 \text {e+03}\, \text {km}&\qquad p&= 6.6385958338730\mathrm{e} {-}{01} \\ h&= 1.0413786122339\mathrm{e} {-}{03}&\qquad q&= -3.2378595304974\mathrm{e} {-}{01} \\ k&= -9.4326894672662\mathrm{e} {-}{03}&\qquad \ell&= 4.8729592715682 \text {e+00} \end{aligned}$$

1.12 IOE to Keplerian Orbital Elements Conversion (Optional)

$$\begin{aligned} a&= 7.1366000000000 \text {e+03}\, \text {km}&\qquad \varOmega&= 2.0245819323134 \text {e+00} \\ e&= 9.4900000000000\mathrm{e} {-}{03}&\qquad \omega&= 1.0070549784028 \text {e+00} \\ i&= 1.2723450247039 \text {e+00}&\qquad M&= 1.8413223608519 \text {e+00} \end{aligned}$$

These Keplerian orbital elements are precisely those for the LEO object in Table 1. Note that the angular quantities \((i, \varOmega , \omega , M)\) in the above are given in radians whereas the table converts them to degrees.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aristoff, J.M., Horwood, J.T. & Alfriend, K.T. On a set of J\(_2\) equinoctial orbital elements and their use for uncertainty propagation. Celest Mech Dyn Astr 133, 9 (2021). https://doi.org/10.1007/s10569-021-10004-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-021-10004-0

Keywords

PACS

Navigation