Skip to main content
Log in

Spatial periodic orbits in the equilateral circular restricted four-body problem: computer-assisted proofs of existence

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We use validated numerical methods to prove the existence of spatial periodic orbits in the equilateral restricted four-body problem. We study each of the vertical Lyapunov families (up to symmetry) in the triple Copenhagen problem, as well as some halo and axial families bifurcating from planar Lyapunov families. We consider the system with both equal and non-equal masses. Our method is constructive and non-perturbative, being based on a posteriori analysis of a certain nonlinear operator equation in the neighborhood of a suitable approximate solution. The approximation is via piecewise Chebyshev series with coefficients in a Banach space of rapidly decaying sequences. As by-product of the proof, we obtain useful quantitative information about the location and regularity of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Álvarez-Ramírez, M., Vidal, C.: Dynamical aspects of an equilateral restricted four-body problem. Math. Prob. Eng. 181360, 23 (2009)

    MathSciNet  MATH  Google Scholar 

  • Arioli, G.: Periodic orbits, symbolic dynamics and topological entropy for the restricted 3-body problem. Commun. Math. Phys. 231(1), 1–24 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Arioli, G.: Branches of periodic orbits for the planar restricted 3-body problem. Discrete Contin. Dyn. Syst. 11(4), 745–755 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Arioli, G., Koch, H.: Non-symmetric low-index solutions for a symmetric boundary value problem. J. Differ. Equ. 252(1), 448–458 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Arioli, G., Barutello, V., Terracini, S.: A new branch of Mountain Pass solutions for the choreographical 3-body problem. Commun. Math. Phys. 268(2), 439–463 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Baltagiannis, A.N., Papadakis, K.E.: Families of periodic orbits in the restricted four-body problems. Astrophys. Space Sci. 366, 357–367 (2011)

    Article  ADS  MATH  Google Scholar 

  • Barros, J.F., Leandro, E.S.G.: The set of degenerate central configurations in the planar restricted four-body problem. SIAM J. Math. Anal. 43(2), 634–661 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Barros, J.F., Leandro, E.S.G.: Bifurcations and enumeration of classes of relative equilibria in the planar restricted four-body problem. SIAM J. Math. Anal. 46(2), 1185–1203 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Belbruno, E.: Fly me to the Moon. An Insider’s Guide to the New Science of Space Travel, with a Foreword by Neil deGrasse Tyson. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  • Broucke, R.A.: Periodic orbits in the restricted three–body problem with earth-moon masses. Technical Report, JPL (1968)

  • Burgos-García, J.: Órbitas periodicas en el problema restringido de cuatro cuerpos. Ph.D. thesis, UAM-I (2013)

  • Burgos-García, J.: Families of periodic orbits in the planar Hill’s four-body problem. Astrophys. Space Sci. 361(11), 353 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Burgos-Garcia, J., Bengochea, A.: Horseshoe orbits in the restricted four-body problem. Astrophys. Space Sci. 362(11), 212 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  • Burgos-García, J., Delgado, J.: Periodic orbits in the restricted four-body problem with two equal masses. Astrophys. Space Sci. 345(2), 247–263 (2013)

    Article  ADS  MATH  Google Scholar 

  • Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. I. Manifolds associated to non-resonant subspaces. Indiana Univ. Math. J. 52(2), 283–328 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. III. Overview and applications. J. Differ. Equ. 218(2), 444–515 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Calleja, R.C., Doedel, E.J., Humphries, A.R., Lemus-Rodríguez, A., Oldeman, E.B.: Boundary-value problem formulations for computing invariant manifolds and connecting orbits in the circular restricted three body problem. Celest. Mech. Dyn. Astron. 114(1–2), 77–106 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  • Capiński, M.J.: Computer assisted existence proofs of Lyapunov orbits at \(L_2\) and transversal intersections of invariant manifolds in the Jupiter–Sun PCR3BP. SIAM J. Appl. Dyn. Syst. 11(4), 1723–1753 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Capiński, M.J., Roldán, P.: Existence of a center manifold in a practical domain around \(L_1\) in the restricted three-body problem. SIAM J. Appl. Dyn. Syst. 11(1), 285–318 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Capiński, M.J., Wasieczko-Zajac, A.: Geometric proof of strong stable/unstable manifolds with application to the restricted three body problem. Topol. Methods Nonlinear Anal. 46(1), 363–399 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Castelli, R., Lessard, J.-P., Mireles James, J.D.: Parameterization of invariant manifolds for periodic orbits I: efficient numerics via the floquet normal form. SIAM J. Appl. Dyn. Syst. 14(1), 132–167 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Castelli, R., Lessard, J.-P., Mireles James, J.D.: Parameterization of invariant manifolds for periodic orbits (ii): a posteriori analysis and computer assisted error bounds. J. Dyn. Differ. Equ. 30(4), 1525–1581 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Celletti, A., Chierchia, L.: A computer-assisted approach to small-divisors problems arising in Hamiltonian mechanics. In: Meyer, K.R., Schmidt, D.S. (eds.) Computer Aided Proofs in Analysis. The IMA Volumes in Mathematics and its Applications, vol. 28, pp. 43–51. Springer, New York (1991)

    Chapter  MATH  Google Scholar 

  • Celletti, A., Chierchia, L.: Rigorous estimates for a computer-assisted KAM theory. J. Math. Phys. 28(9), 2078–2086 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Celletti, A., Chierchia, L.: On the stability of realistic three-body problems. Commun. Math. Phys. 186(2), 413–449 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Celletti, A., Chierchia, L.: KAM stability and celestial mechanics. Mem. Am. Math. Soc. 187(878), viii+134 (2007)

    MathSciNet  MATH  Google Scholar 

  • Celletti, A., Falcolini, C., Porzio, A.: Rigorous numerical stability estimates for the existence of KAM tori in a forced pendulum. Ann. Inst. H. Poincaré Phys. Théor. 47(1), 85–111 (1987)

    MathSciNet  MATH  Google Scholar 

  • Chenciner, A.: Poincaré and the Three-Body Problem. Henri Poincaré, 1912–2012, pp. 51–149. Springer, Basel (2015)

    MATH  Google Scholar 

  • Day, S., Lessard, J.-P., Mischaikow, K.: Validated continuation for equilibria of PDEs. SIAM J. Numer. Anal. 45(4), 1398–1424 (2007). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  • de la Llave, R., Rana, D.: Accurate strategies for small divisor problems. Bull. Am. Math. Soc. (N.S.) 22(1), 85–90 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Deprit, A., Price, J.F.: The computation of characteristic exponents in the planar restricted problem of three bodies. Boeing Scientific Research Laboratories, Mathematics Research Laboratory, Mathematical Note (415):1–84, http://www.dtic.mil/dtic/tr/fulltext/u2/622985.pdf (1965)

  • Doedel, E.J., Romanov, V.A., Paffenroth, R.C., Keller, H.B., Dichmann, D.J., Galán-Vioque, J., Vanderbauwhede, A.: Elemental periodic orbits associated with the libration points in the circular restricted 3-body problem. Int. J. Bifur. Chaos Appl. Sci. Engrgy 17(8), 2625–2677 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Eckmann, J.-P., Koch, H., Wittwer, P.: A computer-assisted proof of universality for area-preserving maps. Mem. Am. Math. Soc. 47(289), vi+122 (1984)

    MathSciNet  MATH  Google Scholar 

  • Farquhar, R.W.: The control and use of libration-point satellites. Ph.D. thesis, Stanford University. Stanford, California (1968)

  • Farrés, A., Jorba, À.: On the high order approximation of the centre manifold for ODEs. Discrete Contin. Dyn. Syst. Ser. B 14(3), 977–1000 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Folta, D., Beckman, M.: Libration orbit mission design: applications of numerical and dynamical methods. In: Libration Point Orbits and Applications, Girona, Spain (2002)

  • Galante, J., Kaloshin, V.: Destruction of invariant curves in the restricted circular planar three-body problem by using comparison of action. Duke Math. J. 159(2), 275–327 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Gameiro, M., Lessard, J.-P.: A posteriori verification of invariant objects of evolution equations: periodic orbits in the Kuramoto–Sivashinsky PDE. SIAM J. Appl. Dyn. Syst. 16(1), 687–728 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Haro, À., de la Llave, R.: A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: numerical algorithms. Discrete Contin. Dyn. Syst. Ser. B 6(6), 1261–1300 (2006). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  • Haro, À., Canadell, M., Figueras, J.-L., Luque, A., Mondelo, J.-M.: The Parameterization Method for Invariant Manifolds, volume 195 of Applied Mathematical Sciences. Springer, Cham (2016)

    Book  MATH  Google Scholar 

  • Hénon, M.: Exploration numérique du probléme restreint I. Masses égales, orbites périodiques. Ann. Astrophys. 28, 499–511 (1965)

    ADS  MATH  Google Scholar 

  • Hénon, M.: Exploration numérique du probléme restreint II. Masses égales, stabilité des orbites périodiques. Ann. Astrophys. 28, 992–1007 (1965)

    ADS  MATH  Google Scholar 

  • Hénon, M.: Vertical stability of periodic orbits in the restricted problem. I. Equal Masses. Astron. Astrophys. 28, 415–426 (1973)

    ADS  MATH  Google Scholar 

  • Hungria, A., Lessard, J.-P., Mireles James, J.D.: Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach. Math. Comput. 85(299), 1427–1459 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Jorba, À., Zou, M.: A software package for the numerical integration of ODEs by means of high-order Taylor methods. Exp. Math. 14(1), 99–117 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Kalies, W.D., Kepley, S., Mireles James, J.D.: Analytic continuation of local (un)stable manifolds with rigorous computer assisted error bounds. SIAM J. Appl. Dyn. Syst. 17(1), 157–202 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Kapela, T., Simó, C.: Rigorous KAM results around arbitrary periodic orbits for Hamiltonian systems. Nonlinearity 30(3), 965–986 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kapela, T., Zgliczyński, P.: The existence of simple choreographies for the \(N\)-body problem–a computer-assisted proof. Nonlinearity 16(6), 1899–1918 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Keller, H.B.: Lectures on numerical methods in bifurcation problems, volume 79 of Tata Institute of Fundamental Research Lectures on Mathematics and Physics. Published for the Tata Institute of Fundamental Research, Bombay, (1987). With notes by A. K. Nandakumaran and Mythily Ramaswamy

  • Kepley S, Mireles James, J.D.: Chaotic motions in the restricted four body problem via Devaney’s saddle-focus homoclinic tangle theorem. J. Differ. Equ. 1–67. https://doi.org/10.1016/j.jde.2018.08.007 (2018)

  • Knuth, D.E.: The art of computer programming. Vol. 2. Addison-Wesley Publishing Co., Reading, Mass., second edn, (1981). Seminumerical algorithms, Addison-Wesley Series in Computer Science and Information Processing

  • Koch, H., Schenkel, A., Wittwer, P.: Computer-assisted proofs in analysis and programming in logic: a case study. SIAM Rev. 38(4), 565–604 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Leandro, E.S.G.: On the central configurations of the planar restricted four-body problem. J. Differ. Equ. 226(1), 323–351 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lessard, J.-P.: Computing discrete convolutions with verified accuracy via Banach algebras and the FFT. Appl. Math. 63(3), 219–235 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Lessard, J.-P., Mireles James, J.D., Ransford, J.: Automatic differentiation for Fourier series and the radii polynomial approach. Phys. D 334, 174–186 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Meyer, K.R., Hall, G.R., Offin, D.: Introduction to Hamiltonian Dynamical Systems and the \(N\)-body Problem. Applied Mathematical Sciences, vol. 90, 2nd edn. Springer, New York (2009)

    MATH  Google Scholar 

  • Mireles James, J.D., Murray, M.: Chebyshev–Taylor parameterization of stable/unstable manifolds for periodic orbits: implementation and applications. Int. J. Bifur. Chaos Appl. Sci. Engrgy 27(14), 1730050, 32 (2017)

    MathSciNet  MATH  Google Scholar 

  • Moser, J.: Stable and Random Motions in Dynamical Systems. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, 2001. With special emphasis on celestial mechanics, Reprint of the 1973 original, With a foreword by Philip J. Holmes (2001)

  • Muñoz Almaraz, F.J., Galán, J., Freire, E.: Numerical continuation of periodic orbits in symmetric Hamiltonian systems. In: International Conference on Differential Equations, vol. 1, 2, pp. 919–921. World Science Publication, River Edge (2000)

  • Muñoz Almaraz, F.J., Freire, E., Galán, J., Doedel, E., Vanderbauwhede, A.: Continuation of periodic orbits in conservative and Hamiltonian systems. Phys. D 181(1–2), 1–38 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Papadakis, K.E.: Families of asymmetric periodic solutions in the restricted four-body problem. Astrophys. Space Sci. 361(12), 377 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Papadakis, K.E.: Families of three-dimensional periodic solutions in the circular restricted four-body problem. Astrophys. Space Sci. 361(4), 129 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Pedersen, P.: Librationspunkte im restringierten vierkörperproblem. Dan. Mat. Fys. Medd. 21(6), 1–80 (1944)

    MATH  Google Scholar 

  • Pedersen, P.: Stabilitätsuntersuchungen im restringierten vierkörperproblem. Dan. Mat. Fys. Medd. 26(16), 1–38 (1952)

    MATH  Google Scholar 

  • Rabe, E.: Determination and survey of periodic Trojan orbits in the restricted problem of three bodies. Astron. J. 66, 500–513 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  • Rump, S.M.: INTLAB–INTerval LABoratory. In: Tibor, C. (ed.) Developments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht (1999)

    Chapter  Google Scholar 

  • Schwarz, R., Dvorak, R., Suli, A., Erdi, B.: Survey of the stability region of hypothetical habitable trojan planets. Astron. Astrophys. 474, 1023 (2007)

    Article  ADS  Google Scholar 

  • Sepulchre, J.-A., MacKay, R.S.: Localized oscillations in conservative or dissipative networks of weakly coupled autonomous oscillators. Nonlinearity 10(3), 679–713 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Simó, C.: Relative equilibrium solutions in the four-body problem. Celest. Mech. 18(2), 165–184 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Steffensen, J.F.: On the differential equations of Hill in the theory of the motion of the Moon. Acta Math. 93, 169–177 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  • Strömgren, E.: Connaissance actuelle des orbites dans le probleme des trois corps. Bull. Astronom. 9(2), 87–130 (1933)

    ADS  MATH  Google Scholar 

  • Szebehely, Victor: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press Inc., Cambridge (1967)

    MATH  Google Scholar 

  • Tucker, W.: Validated Numerics. A Short Introduction to Rigorous Computations. Princeton University Press, Princeton (2011)

    Book  MATH  Google Scholar 

  • Urschel, J.C., Galante, J.R.: Instabilities in the Sun–Jupiter–Asteroid three body problem. Celestial Mech. Dyn. Astron. 115(3), 233–259 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Van den Berg, J.B., Sheombarsing, R.: Rigorous numerics for ODEs using Chebyshev series and domain decomposition. (Submitted), pp. 1–32, https://www.math.vu.nl/~janbouwe/pub/domaindecomposition.pdf (2016)

  • van den Berg, J.B., Lessard, J.-P.: Rigorous numerics in dynamics. Notices Am. Math. Soc. 62(9), 1057–1061 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • van den Berg, J.B., Breden, M., Lessard, J.-P., Murray, M.: Continuation of homoclinic orbits in the suspension bridge equation: a computer-assisted proof. J. Differ. Equ. 264(5), 3086–3130 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Walawska, I., Wilczak, D.: Continuation and bifurcations of halo orbits in the circular restricted three body problem. In preparation, (2018)

  • Wilczak, D., Zgliczynski, P.: Heteroclinic connections between periodic orbits in planar restricted circular three-body problem–a computer assisted proof. Commun. Math. Phys. 234(1), 37–75 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wilczak, D., Zgliczyński, P.: Heteroclinic connections between periodic orbits in planar restricted circular three body problem. II. Commun. Math. Phys. 259(3), 561–576 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Yamamoto, N.: A numerical verification method for solutions of boundary value problems with local uniqueness by Banach’s fixed-point theorem. SIAM J. Numer. Anal. 35(5), 2004–2013 (1998). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  • Zgliczynski, P.: \(C^1\) Lohner algorithm. Found. Comput. Math. 2(4), 429–465 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors offer their thanks to the two anonymous referees who read the submitted version of the manuscript. The final published version is greatly improved thanks to their insightful comments and questions. The first author was supported by PRODEP grant UACOAH-PTC-416, and the third author was partially supported by NSF grants DMS-1813501 and DMS-1700154 and by the Alfred P. Sloan Foundation Grant G-2016-7320. The authors would like to thank J.B. van den Berg for many helpful conversations in the early stages if this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Burgos-García.

Additional information

The first author was supported by PRODEP Grant UACOAH-PTC-416. The third author was partially supported by NSF Grants DMS-1813501 and DMS-1700154, and by the Alfred P. Sloan Foundation Grant G-2016-7320.

Appendix: Proof of Lemma 3

Appendix: Proof of Lemma 3

Since \(\gamma \) is a solution of the differential equation, we consider the first, third, and fifth components of the vector field and have that \(u_2 = \dot{u}_1\), \(u_4 = \dot{u}_3\) and \(u_6 = \dot{u}_5\). Moreover, considering the seventh component gives

$$\begin{aligned} \dot{u}_7 = \left( -u_1u_2 - u_3 u_4 - u_5 u_6 + x_1 u_2 + y_1 u_4 + \alpha _1 \right) u_7^3, \end{aligned}$$

and since \(u_7 > 0\), we divide by \(u_7^3\) and rewrite this as

$$\begin{aligned} \frac{1}{u_7^3} \frac{\mathrm{d}}{\mathrm{d}t}u_7&= -(u_1 - x_1)u_2 - (u_3 - y_1)u _4 - u_5 u_6 + \alpha _1 \\&= -(u_1 - x_1)u_1' - (u_3 - y_1)u _3' - u_5 u_5' + \alpha _1 \\&= - \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t}(u_1 - x_1)^2 - \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t}(u_2 - y_1)^2 - \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t}(u_3)^2 + \alpha _1 \\&= -\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \left( (u_1 - x_1)^2 + (u_2 - y_1)^2 + u_3^2 \right) + \alpha _1, \end{aligned}$$

or

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} G_1(t) = \frac{\mathrm{d}}{\mathrm{d}t} F_1(t) + \alpha _1, \end{aligned}$$
(15)

where

$$\begin{aligned} F_1(t) -\frac{1}{2}\left( (u_1(t) - x_1)^2 + (u_3(t) - y_1)^2 + (u_1(t) - x_1)^2 \right) , \end{aligned}$$

and

$$\begin{aligned} G_1(t) -\frac{1}{2u_7(t)^2}, \end{aligned}$$

are both periodic functions. Taking the average of Eq. (15) over the interval [0, T] leads to

$$\begin{aligned} 0 = \frac{1}{T}\int _{0}^T \alpha _1 \, \mathrm{d}t = \alpha _1, \end{aligned}$$

as the derivatives of \(F_1\) and \(G_1\) (indeed the derivatives of any periodic function) have average zero. Since \(T > 0\), we conclude that \(\alpha _1 = 0\) as desired. Nearly identical arguments, applied to the eighth and ninth component equations, show that \(\alpha _2 = \alpha _3 = 0\).

Now define

$$\begin{aligned} {\hat{u}}(t) \frac{1}{\sqrt{(u_1(t) - x_1)^2 + (u_3(t) - y_1)^2 + u_5(t)^2}}, \end{aligned}$$

and note that

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} {\hat{u}}(t)&= -\frac{\frac{\mathrm{d}}{\mathrm{d}t} (u_1(t) - x_1)^2 + (u_3(t) - y_1)^2 + u_5(t)^2}{2 \left( \sqrt{(u_1(t) - x_1)^2 + (u_3(t) - y_1)^2 + u_5(t)^2}\right) ^3 } \\&= -\,{\hat{u}}^3 \left( (u_1 - x_1) u_2 + (u_3 - y_1)u_4 + u_5 u_6 \right) \\&=-\,{\hat{u}}^3 u_1 u_2 - {\hat{u}}^3 u_3 u_4 -{\hat{u}}^3 u_5 u_6 + {\hat{u}}^3 x_1 u_2 + {\hat{u}}^3 y_1 u_4 . \end{aligned}$$

Then, we see that \(u_7(t)\) and \({\hat{u}}(t)\) satisfy the same differential equation with the same initial condition. By existence and uniqueness for ODEs, we have that \(u_7(t) = {\hat{u}}(t)\), i.e.,

$$\begin{aligned} u_7(t) = \frac{1}{\sqrt{(u_1(t) - x_1)^2 + (u_3(t) - y_1)^2 + u_5(t)^2}}. \end{aligned}$$
(16)

for all \(t\in [0,T]\). Similarly,

$$\begin{aligned} u_8(t) = \frac{1}{\sqrt{(u_1(t) - x_2)^2 + (u_3(t) - y_2)^2 + u_5(t)^2}}. \end{aligned}$$
(17)

and

$$\begin{aligned} u_9(t) = \frac{1}{\sqrt{(u_1(t) - x_3)^2 + (u_3(t) - y_3)^2 + u_5(t)^2}}. \end{aligned}$$
(18)

for all \(t\in [0,T]\).

The argument that \(\beta = 0\) is similar to the above but different enough that we include it for the sake of completeness. Inspired by the energy functional for the circular restricted four-body problem, we define the function

$$\begin{aligned} H(u) = -(u_2^2 + u_4^2 + u_6^2) + u_1^2 + u_3^2 + 2\left( m_1 u_7 + m_2 u_8 + m_3 u_9 \right) \end{aligned}$$

and observe that \(H(\gamma (t))\) is a periodic function. We have that

$$\begin{aligned} \nabla H = \left( \begin{array}{c} 2 u_1 \\ -2 u_2 \\ 2 u_3 \\ -2 u_4 \\ 0 \\ -2 u_6 \\ 2 m_1 \\ 2 m_2 \\ 2 m_3 \end{array} \right) . \end{aligned}$$

Since we have already established that \(\alpha _1 = \alpha _2 = \alpha _3 = 0\), we have that

$$\begin{aligned} \left<\nabla H, g \right>&= {\langle }{ \begin{pmatrix} 2 u_1 \\ -2 u_2 \\ 2 u_3 \\ -2 u_4 \\ 0 \\ -2 u_6 \\ 2 m_1 \\ 2 m_2 \\ 2 m_3 \end{pmatrix} \begin{pmatrix} u_2 \\ 2u_4 + u_1 - m_1 u_1 u_7^3 - m_2 u_1 u_8^3 - m_3 u_1 u_9^3 + m_1 x_1 u_7^3 + m_2 x_2 u_8^3 + m_3 x_3 u_9^3 + \beta u_2 \\ u_4 \\ -2 u_2 + u_3 - m_1 u_3 u_7^3 - m_2 u_3 u_8^3 - m_3 u_3 u_9^3 + m_1 y_1 u_7^3 + m_2 y_2 u_8^3 + m_3 y_3 u_9^3 \\ u_6 \\ -m_1 u_5 u_7^3 - m_2 u_5 u_8^3 - m_3 u_5 u_9^3 + m_1 z_1 u_7^3 + m_2 z_2 u_8^3 + m_3 z_3 u_9^3 \\ - u_1 u_2 u_7^3 - u_3 u_4 u_7^3- u_5 u_6 u_7^3 + x_1 u_2 u_7^3 +y_1 u_4 u_7^3 + z_1 u_6 u_7^3 \\ - u_1 u_2 u_8^3 - u_3 u_4 u_8^3- u_5 u_6 u_8^3 + x_2 u_2 u_8^3 +y_2 u_4 u_8^3 + z_2 u_6 u_8^3 \\ - u_1 u_2 u_9^3 - u_3 u_4 u_9^3- u_5 u_6 u_9^3 + x_3 u_2 u_9^3 +y_3 u_4 u_9^3 + z_3 u_6 u_9^3 \end{pmatrix}} {\rangle } \\&= 2 u_1 u_2 -2 u_2 (2u_4 + u_1 - m_1 u_1 u_7^3 - m_2 u_1 u_8^3 - m_3 u_1 u_9^3 + m_1 x_1 u_7^3 + m_2 x_2 u_8^3 + m_3 x_3 u_9^3) - 2 \beta u_2^2 \\&\quad + 2 u_3 u_4 - 2 u_4 (-2 u_2 + u_3 - m_1 u_3 u_7^3 - m_2 u_3 u_8^3 - m_3 u_3 u_9^3 + m_1 y_1 u_7^3 + m_2 y_2 u_8^3 + m_3 y_3 u_9^3) \\&\quad -2u_6 (-m_1 u_5 u_7^3 - m_2 u_5 u_8^3 - m_3 u_5 u_9^3 + m_1 z_1 u_7^3 + m_2 z_2 u_8^3 + m_3 z_3 u_9^3) \\&\quad +2m_1(- u_1 u_2 u_7^3 - u_3 u_4 u_7^3- u_5 u_6 u_7^3 + x_1 u_2 u_7^3 +y_1 u_4 u_7^3 + z_1 u_6 u_7^3) \\&\quad + 2 m_2 (- u_1 u_2 u_8^3 - u_3 u_4 u_8^3- u_5 u_6 u_8^3 + x_2 u_2 u_8^3 +y_2 u_4 u_8^3 + z_2 u_6 u_8^3) \\&\quad +2 m_3 (- u_1 u_2 u_9^3 - u_3 u_4 u_9^3- u_5 u_6 u_9^3 + x_3 u_2 u_9^3 +y_3 u_4 u_9^3 + z_3 u_6 u_9^3 ) \\&= 2 u_1 u_2 -4 u_2 u_4 -2 u_2 u_1 + 2 m_1 u_2 u_1 u_7^3 + 2 m_2 u_2 u_1 u_8^3 + 2 m_3 u_2 u_1 u_9^3 \\&\quad -2 m_1 u_2 x_1 u_7^3 -2 m_2 u_2 x_2 u_8^3 -2 m_3 u_2 x_3 u_9^3 - 2 \beta u_2^2 \\&\quad + 2 u_3 u_4 + 4 u_2 u_4 - 2 u_3 u_4 + 2 m_1 u_3 u_4 u_7^3 + 2 m_2 u_3 u_4 u_8^3 + 2 m_3 u_3 u_4 u_9^3 \\&\quad - 2 m_1 y_1 u_4 u_7^3 - 2 m_2 y_2 u_4 u_8^3 - 2 m_3 y_3 u_4 u_9^3 \\&\quad + 2 m_1 u_5 u_6 u_7^3 + 2 m_2 u_5 u_6 u_8^3 + 2 m_3 u_5 u_6 u_9^3 - 2 m_1 z_1 u_6 u_7^3 - 2 m_2 z_2 u_6 u_8^3 - 2 m_3 z_3 u_6 u_9^3 \\&\quad - 2 m_1 u_1 u_2 u_7^3 - 2 m_1 u_3 u_4 u_7^3 - 2 m_1 u_5 u_6 u_7^3 + 2 m_1 x_1 u_2 u_7^3 + 2 m_1 y_1 u_4 u_7^3 + 2 m_1 z_1 u_6 u_7^3 \\&\quad - 2 m_2 u_1 u_2 u_8^3 - 2 m_2 u_3 u_4 u_8^3 - 2 m_2 u_5 u_6 u_8^3 + 2 m_2 x_2 u_2 u_8^3 + 2 m_2 y_2 u_4 u_8^3 + 2 m_2 z_2 u_6 u_8^3 \\&\quad - 2 m_3 u_1 u_2 u_9^3 - 2 m_3 u_3 u_4 u_9^3 - 2 m_3u_5 u_6 u_9^3 + 2 m_3 x_3 u_2 u_9^3 + 2 m_3 y_3 u_4 u_9^3 \\&\quad + 2 m_3 z_3 u_6 u_9^3. = - 2 \beta u_2^2. \end{aligned}$$

Then, we note that \(H(\gamma (t))\) is a periodic function and that the above computation gives

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} H(t)&= \nabla H(\gamma (t)) \gamma '(t) \\&= \nabla H(\gamma (t)) g(\gamma (t)) \\&= -2 \beta u_2^2(t). \end{aligned}$$

Taking the average and exploiting that the average of the derivative of a periodic function is zero give

$$\begin{aligned} 0 = \frac{1}{T}\int _0^T \frac{\mathrm{d}}{\mathrm{d}t} H(t) \, \mathrm{d}t = -\frac{2 \beta }{T} \int _0^T u_2(t)^2 \, \mathrm{d}t. \end{aligned}$$

Since \(T > 0\) and \(u_2(t)^2\) do not change sign, it follows that \(\beta = 0\).

Finally, we recall Eqs. (16), (17), and (18) as well as the fact that \(\beta = 0\) and have that

$$\begin{aligned} \dot{u}_2&= 2u_4 + u_1 - m_1 u_1 u_7^3 - m_2 u_1 u_8^3 - m_3 u_1 u_9^3 + m_1 x_1 u_7^3 + m_2 x_2 u_8^3 + m_3 x_3 u_9^3 \\&= 2u_4 + u_1 - m_1 (u_1 - x_1) u_7^3 - m_2 (u_1 - x_2) u_8^3 - m_3 (u_1 - x_3) u_9^3 \\&= 2u_4 + u_1 - \frac{m_1 (u_1 - x_1)}{\left( (u_1(t) - x_1)^2 + (u_3(t) - y_1)^2 + u_5(t)^2 \right) ^{3/2}} \\&\quad - \frac{m_2 (u_1 - x_2)}{\left( (u_1(t) - x_2)^2 + (u_3(t) - y_2)^2 + u_5(t)^2 \right) ^{3/2}} \\&\quad - \frac{m_3 (u_1 - x_3)}{\left( (u_1(t) - x_3)^2 + (u_3(t) - y_3)^2 + u_5(t)^2 \right) ^{3/2}} \\&= 2u_4 + {\varOmega }_x. \end{aligned}$$

A similar computation shows that

$$\begin{aligned} \dot{u}_4 = -2 u_2 + {\varOmega }_y \end{aligned}$$

and that

$$\begin{aligned} \dot{u}_6 = {\varOmega }_z. \end{aligned}$$

Then, \({\hat{\gamma }}(t) (u_1(t), u_2(t), u_3(t), u_4(t), u_5(t), u_6(t))\) is a periodic solution of the circular restricted four-body problem as desired.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burgos-García, J., Lessard, JP. & James, J.D.M. Spatial periodic orbits in the equilateral circular restricted four-body problem: computer-assisted proofs of existence. Celest Mech Dyn Astr 131, 2 (2019). https://doi.org/10.1007/s10569-018-9879-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-018-9879-8

Keywords

Navigation