Skip to main content

Advertisement

Log in

Induction of Sestrin2 by pterostilbene suppresses ethanol-triggered hepatocyte senescence by degrading CCN1 via p62-dependent selective autophagy

  • Original Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Hepatocyte senescence is a key event participating in the progression of alcoholic liver disease. Autophagy is a critical biological process that controls cell fates by affecting cell behaviors like senescence. Pterostilbene is a natural compound with hepatoprotective potential; however, its implication for alcoholic liver disease was not understood. This study was aimed to investigate the therapeutic effect of pterostilbene on alcoholic liver disease and elucidate the potential mechanism. Our results showed that pterostilbene alleviated ethanol-triggered hepatocyte damage and senescence. Intriguingly, pterostilbene decreased the protein abundance of cellular communication network factor 1 (CCN1) in ethanol-exposed hepatocytes, which was essential for pterostilbene to execute its anti-senescent function. In vivo studies verified the anti-senescent effect of pterostilbene on hepatocytes of alcohol-intoxicated mice. Pterostilbene also relieved senescence-associated secretory phenotype (SASP), redox imbalance, and steatosis by suppressing hepatic CCN1 expression. Mechanistically, pterostilbene-forced CCN1 reduction was dependent on posttranscriptional regulation via autophagy machinery but not transcriptional regulation. To be specific, pterostilbene restored autophagic flux in damaged hepatocytes and activated p62-mediated selective autophagy to recognize and lead CCN1 to autolysosomes for degradation. The protein abundance of Sestrin2 (SESN2), a core upstream modulator of autophagy pathway, was decreased in ethanol-administrated hepatocytes but rescued by co-treatment with pterostilbene. Induction of SESN2 protein by pterostilbene rescued ethanol-triggered autophagic dysfunction in hepatocytes, which then reduced senescence-associated markers, postponed hepatocyte senescence, and relieved alcohol-caused liver injury and inflammation. In conclusion, this work discovered a novel compound pterostilbene with therapeutic implications for alcoholic liver disease and uncover its underlying mechanism.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

Code availability

Not applicable.

Abbreviations

ALT:

alanine aminotransferase

AO:

acridine orange

AST:

aspartate aminotransferase

ATG7:

autophagy-related protein 7

BafA1:

bafilomycin A1

BECN1:

Beclin1

CCK-8:

cell count kit-8

CCN1:

cellular communication network factor 1

CHX:

cycloheximide

Co-IP:

co-immunoprecipitation

CQ:

chloroquine

DMSO:

dimethylsulfoxide

ELISA:

enzyme-linked immunosorbent assay

FBS:

fetal bovine serum

GSH:

hlutathione

GSSG:

oxidized glutathione

H&E:

hematoxylin and eosin

HMGA1:

high mobility group A1

IFNγ:

interferon gamma

LAMP:

lysosome-associated membrane protein 1

LC3:

microtubule-associated protein 1 light chain 3

3-MA:

3-methyladenine

MDC:

monodansylcadaverine

mTOR:

mechanistic target of rapamycin

NBR1:

neighbor of BRCA1 gene 1

NC:

negative control

NDP52:

nuclear dot protein 52

OPTN:

optineurin

PBS:

phosphate-buffered saline

PTS:

pterostilbene

ROS:

reactive oxygen species

SA-β-gal:

senescence-associated β-galactosidase

SASP:

senescence-associated secretory phenotype

SD:

standard deviation

SESN2:

Sestrin2

TC:

total cholesterol

TEM:

transmission electron microscopy

TERT:

telomerase reverse transcriptase

TG:

triglyceride

TNFα:

tumor necrosis factor alpha

TRF:

telomeric repeat binding factor

References

  • Babuta M, Furi I, Bala S, Bukong TN, Lowe P, Catalano D, Calenda C, Kodys K, Szabo G. Dysregulated autophagy and lysosome function are linked to exosome production by Micro-RNA 155 in Alcoholic Liver Disease. Hepatology. 2019;70(6):2123–41.

    Article  CAS  PubMed  Google Scholar 

  • Bian Z, Peng Y, You Z, Wang Q, Miao Q, Liu Y, et al. CCN1 expression in hepatocytes contributes to macrophage infiltration in nonalcoholic fatty liver disease in mice. J Lipid Res. 2013;54(1):44–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Liu Z, et al. SIRT6 enhances telomerase activity to protect against DNA damage and senescence in hypertrophic ligamentum flavum cells from lumbar spinal stenosis patients. Aging (Albany NY). 2021;13:6025–40.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Zhang H, et al. Pterostilbene as a protective antioxidant attenuates diquat-induced liver injury and oxidative stress in 21-day-old broiler chickens. Poult Sci. 2020;99(6):3158–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YT, Huang ZY, Tang HH, Kuo WT, Wu SY, Lan SH, et al. Pterostilbene sensitizes cisplatin-resistant human bladder cancer cells with oncogenic HRAS. Cancers (Basel). 2020a;12(10):1–25.

    Article  CAS  Google Scholar 

  • Ding WX, Li M, et al. Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice. Gastroenterology. 2010;139(5):1740–52.

    Article  CAS  PubMed  Google Scholar 

  • Ding WX, Manley S, Ni HM. The emerging role of autophagy in alcoholic liver disease. Exp Biol Med (Maywood). 2011;236(5):546–56.

    Article  CAS  PubMed  Google Scholar 

  • Dong R, Wang X, Wang L, Wang C, Huang K, Fu T, et al. Yangonin inhibits ethanol-induced hepatocyte senescence via miR-194/FXR axis. Eur J Pharmacol. 2021;890:173653.

    Article  CAS  PubMed  Google Scholar 

  • Feng M, Peng H, Yao R, Zhang Z, Mao G, Yu H, et al. Inhibition of cellular communication network factor 1 (CCN1)-driven senescence slows down cartilage inflammaging and osteoarthritis. Bone. 2020;139:115522.

    Article  CAS  PubMed  Google Scholar 

  • Feng T, Meng J, Kou S, Jiang Z, Huang X, Lu Z, Zhao H, Lau LF, Zhou B, Zhang H. CCN1-Induced cellular senescence promotes heart regeneration. Circulation. 2019;139(21):2495–8.

    Article  PubMed  Google Scholar 

  • Gómez-Zorita S, Milton-Laskíbar I, Aguirre L, Fernández-Quintela A, Xiao J, Portillo MP. Effects of pterostilbene on diabetes, liver steatosis and serum lipids. Curr Med Chem. 2021;28(2):238–52.

  • Gorojod RM, Alaimo A, Porte Alcon S, Pomilio C, Saravia F, Kotler ML. The autophagic- lysosomal pathway determines the fate of glial cells under manganese- induced oxidative stress conditions. Free Radic Biol Med. 2015;87:237–51.

    Article  CAS  PubMed  Google Scholar 

  • Habiballa L, Salmonowicz H, Passos JF. Mitochondria and cellular senescence: Implications for musculoskeletal ageing. Free Radic Biol Med. 2019;132:3–10.

    Article  CAS  PubMed  Google Scholar 

  • He S, Sharpless NE. Senescence in health and disease. Cell. 2017;169(6):1000–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Cai H, Zhou H, Li T, Jin H, Evans CE, Cai J, Pi J. Cobalt oxide nanoparticle-synergized protein degradation and phototherapy for enhanced anticancer therapeutics. Acta Biomater. 2021;121:605–20.

    Article  CAS  PubMed  Google Scholar 

  • Iwai-Kanai E, Yuan H, Huang C, Sayen MR, Perry-Garza CN, Kim L, Gottlieb RA. A method to measure cardiac autophagic flux in vivo. Autophagy. 2008;4(3):322–9.

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Lian N, Bian M, Zhang C, Chen X, Shao J, et al. Oroxylin A inhibits ethanol-induced hepatocyte senescence via YAP pathway. Cell Prolif. 2018;51(3):e12431.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang KY, Shin JK, Lee SM. Pterostilbene protects against acetaminophen-induced liver injury by restoring impaired autophagic flux. Food Chem Toxicol. 2019;123:536–45.

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Yang X, Han L, Ye F, Liu M, Fan W, et al. Pterostilbene alleviates polymicrobial sepsis-induced liver injury: Possible role of SIRT1 signaling. Int Immunopharmacol. 2017;49:50–9.

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Wang J, Zhang Y, Wu D, Li S, Jiang A, et al. Pterostilbene exerts hepatoprotective effects through ameliorating LPS/D-Gal-induced acute liver injury in mice. Inflammation. 2020;44:525–35.

  • Lu C, Xu W, Shao J, Zhang F, Chen A, Zheng S. Nrf2 Activation is required for ligustrazine to inhibit hepatic steatosis in alcohol-preferring mice and hepatocytes. Toxicol Sci. 2017;155(2):432–43.

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Xu W, Shao J, Zhang F, Chen A, Zheng S. Nrf2 induces lipocyte phenotype via a SOCS3-dependent negative feedback loop on JAK2/STAT3 signaling in hepatic stellate cells. Int Immunopharmacol. 2017b;49:203–11.

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Xu W, Zhang F, Shao J, Zheng S. Nrf2 knockdown attenuates the ameliorative effects of ligustrazine on hepatic fibrosis by targeting hepatic stellate cell transdifferentiation. Toxicology. 2016a;365:35–47.

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Xu W, Zhang F, Shao J, Zheng S. Nrf2 knockdown disrupts the protective effect of curcumin on alcohol-induced hepatocyte necroptosis. Mol Pharm. 2016b;13(12):4043–53.

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Xu W, Zheng S. Nrf2 activation is required for curcumin to induce lipocyte phenotype in hepatic stellate cells. Biomed Pharmacother. 2017c;95:1–10.

    Article  PubMed  Google Scholar 

  • Ogrodnik M, Jurk D. Senescence explains age- and obesity-related liver steatosis. Cell Stress. 2017;1(1):70–2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogrodnik M, Miwa S, Tchkonia T, Tiniakos D, Wilson CL, Lahat A, et al. Cellular senescence drives age-dependent hepatic steatosis. Nat Commun. 2017;8:15691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papatheodoridi AM, Chrysavgis L, Koutsilieris M, Chatzigeorgiou A. The role of senescence in the development of nonalcoholic fatty liver disease and progression to nonalcoholic steatohepatitis. Hepatology. 2020;71(1):363–74.

    Article  CAS  PubMed  Google Scholar 

  • Rubin SM, Gall AL, Zheng N, Pavletich NP. Structure of the Rb C-terminal domain bound to E2F1-DP1: a mechanism for phosphorylation-induced E2F release. Cell. 2005;123(6):1093–106.

    Article  CAS  PubMed  Google Scholar 

  • Salazar G, Cullen A, Huang J, Zhao Y, Serino A, Hilenski L, et al. SQSTM1/p62 and PPARGC1A/PGC-1alpha at the interface of autophagy and vascular senescence. Autophagy. 2020;16(6):1092–110.

    Article  CAS  PubMed  Google Scholar 

  • Shao Z, Ni L, et al. RNA-binding protein HuR suppresses senescence through Atg7 mediated autophagy activation in diabetic intervertebral disc degeneration. Cell Prolif. 2020;54:e12975.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tai H, Wang Z, Gong H, Han X, Zhou J, Wang X, et al. Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy. 2017;13(1):99–113.

    Article  CAS  PubMed  Google Scholar 

  • Tsou PS, Khanna D, Sawalha AH. Identification of cysteine-rich angiogenic inducer 61 as a potential antifibrotic and proangiogenic mediator in scleroderma. Arthritis Rheum. 2019;71(8):1350–9.

    Article  CAS  Google Scholar 

  • Wang Y, Han C, Lu L, Magliato S, Wu T. Hedgehog signaling pathway regulates autophagy in human hepatocellular carcinoma cells. Hepatology. 2013;58(3):995–1010.

    Article  CAS  PubMed  Google Scholar 

  • Wang YJ, Chen YY, Hsiao CM, Pan MH, Wang BJ, Chen YC, Ho CT, Huang KC, Chen RJ. Induction of autophagy by pterostilbene contributes to the prevention of renal fibrosis via attenuating NLRP3 Inflammasome activation and epithelial-mesenchymal transition. Front Cell Dev Biol. 2020;8:436.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu J, Li M, He J, Lv K, Wang M, Guan W, et al. Protective effect of pterostilbene on concanavalin A-induced acute liver injury. Food Funct. 2019;10(11):7308–14.

    Article  CAS  PubMed  Google Scholar 

  • Wu R, Wang X, Shao Y, Jiang Y, Zhou Y, Lu C. NFATc4 mediates ethanol-triggered hepatocyte senescence. Toxicol Lett. 2021;350:10–21.

    Article  CAS  PubMed  Google Scholar 

  • Yao R, Ren C, Xia Z, Yao Y. Organelle-specific autophagy in inflammatory diseases: a potential therapeutic target underlying the quality control of multiple organelles. Autophagy. 2021;17:385–401.

  • Yu CL, Yang SF, Hung TW, Lin CL, Hsieh YH, Chiou HL. Inhibition of eIF2alpha dephosphorylation accelerates pterostilbene-induced cell death in human hepatocellular carcinoma cells in an ER stress and autophagy-dependent manner. Cell Death Dis. 2019;10(6):418.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Chen Y, Chen Y, Ji S, Jia P, Xu J, et al. Pterostilbene attenuates liver injury and oxidative stress in intrauterine growth-retarded weanling piglets. Nutrition. 2021a;81:110940.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zheng J, Tie X, Lin T, Yang W, Li Z, et al. Pterostilbene and its nicotinate derivative ameliorated vascular endothelial senescence and elicited endothelium-dependent relaxations via activation of sirtuin 1. Can J Physiol Pharmacol. 2021b;2:1–10.

  • Zhou Y, Jin H, Wu Y, Chen L, Bao X, Lu C. Gallic acid protects against ethanol-induced hepatocyte necroptosis via an NRF2-dependent mechanism. Toxicol in Vitro. 2019;57:226–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81803606 and No. 81900531, China), The Science and Technology Project of Jiangsu Provincial Administration of Traditional Chinese Medicine (No. YB201847, China), Nantong Science and Technology Project (No. MS12018051, China), Innovation and Entrepreneurship Training Program for Undergraduates of Nantong University (No. 2020207, China), and Scientific Research Startup Foundation for Talents of Nantong University (China).

Author information

Authors and Affiliations

Authors

Contributions

Yiming Jiang (data curation: equal; formal analysis: lead; investigation: equal); Ying Zhou (formal analysis: equal; investigation: equal); Wenxuan Xu (formal analysis: equal; validation: lead); Xinqi Wang (visualization: equal); Huanhuan Jin (visualization: equal); Xiaofeng Bao (methodology: equal); Chunfeng Lu (conceptualization: lead; formal analysis: equal; funding acquisition: lead; project administration: lead; resources: lead; software: lead; supervision: lead; writing – original draft: lead; writing – review & editing: lead).

Corresponding author

Correspondence to Chunfeng Lu.

Ethics declarations

Ethics approval

The study was approved by the Institutional and Local Committee on the Care and Use of Animals of Nantong University (Nantong, Jiangsu, China).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Figure S1

Quantification of SA-β-gal staining. Human hepatocytes were treated with vehicle, 100-mM ethanol or plus pterostilbene (5, 10, and 20 μM) for 24 h. Data are expressed as mean ± SD, #P<0.05 versus Vehicle, *P<0.05 versus Ethanol. (PNG 49 kb)

High Resolution Image (TIF 262 kb)

Figure S2

Verification of interference efficiency on autophagy. (A) Hepatocytes were treated with CQ, 3-MA, or NH4Cl at indicated concentrations for 24 h. Western blot analysis of intracellular p62 protein abundance. Data are expressed as mean ± SD, ##P<0.01 and ###P<0.001 versus Vehicle. (B) Hepatocytes were transfected with 100-pmol siNC or siATG7 for 24 h. Western blot analysis of intracellular ATG7 and p62 protein abundance. (C) Hepatocytes were transfected with 100-pmol siNC or siBECN1 for 24 h. Western blot analysis of intracellular BECN1 and p62 protein abundance. Data are expressed as mean ± SD, ##P<0.01 and ###P<0.001 versus siNC. (PNG 257 kb)

High Resolution Image (TIF 1551 kb)

Figure S3

Verification of interference efficiency of BafA1 on autophagy. Hepatocytes were treated with 5-nM BafA1 for 24 h. Western blot analysis of intracellular p62 protein abundance. Data are expressed as mean ± SD, ##P<0.01 versus Vehicle. (PNG 55 kb)

High Resolution Image (TIF 301 kb)

Figure S4

Quantification of co-localization of CCN1 and p62 in hepatocytes. Hepatocytes were treated with vehicle, 100-mM ethanol or plus 20-μM pterostilbene for 24 h. Data are expressed as mean ± SD, #P<0.05 versus Vehicle, *P<0.05 versus Ethanol. (PNG 35 kb)

High Resolution Image (TIF 147 kb)

Figure S5

Verification of interference efficiency on SESN2. Hepatocytes were transfected with 100-pmol siNC or siSESN2 for 24 h. Western blot analysis of intracellular SESN2 protein abundance. Data are expressed as mean ± SD, ##P<0.01 versus siNC. (PNG 71 kb)

High Resolution Image (TIF 396 kb)

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Zhou, Y., Xu, W. et al. Induction of Sestrin2 by pterostilbene suppresses ethanol-triggered hepatocyte senescence by degrading CCN1 via p62-dependent selective autophagy. Cell Biol Toxicol 39, 729–749 (2023). https://doi.org/10.1007/s10565-021-09635-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-021-09635-8

Key words

Navigation