Skip to main content
Log in

Study on the Enhancement of Efficiency, Photocatalytic Kinetics, and Mechanism of Trace GO on TiO2 for Cr(VI) Removal Under Visible Light Conditions

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

This work focuses on the enhancement of removal performance of TiO2 by the introduction of trace amout of GO composite. Among various synthesis methods, it was found that the GO–doped TiO2 by microwave-assisted hydrothermal method had the highest performance in the improvement for Cr (VI) treatment. The removal rate of Cr (VI) by TiO2–GO (0.05%) was 95.96% which is 13.58% higher than that of TiO2. It can be confirmed that GO was successfully doped on TiO2 by XRD, XPS, and FT-IR characterizations. In addition, SEM, TEM, N2 adsorption isotherm, UV–Vis spectra, and photocurrent response elucidate the mechanism of potency enhancement. The addition of trace GO reduces the particle size of TiO2 and results in the agglomeration phenomenon of TiO2, so that the specific surface area of TiO2 becomes larger and the distribution is more uniform, which expands the photoresponse range, and elevating the photoelectron response. Thus, the absorption ability of visible light is greatly improved. The reported method provides a more economical option for treating Cr(VI) wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zhao ZY et al (2019) Progress on the photocatalytic reduction removal of chromium contamination. Chem Rec 19(5):873–882

    Article  CAS  PubMed  Google Scholar 

  2. Barad JM, Kohli HP, Chakraborty M (2022) Adsorption of hexavalent chromium from aqueous stream by maghemite nanoparticles synthesized by the microemulsion method. Energy Nexus 5:100035

    Article  CAS  Google Scholar 

  3. Li Y et al (2016) Removal of Cr(VI) by 3D TiO2-graphene hydrogel via adsorption enriched with photocatalytic reduction. Appl Catal B Environ 199:412–423

    Article  CAS  Google Scholar 

  4. Choppala G, Bolan N, Park JH (2013) Chromium contamination and its risk management in complex environmental settings. In: Sparks DL (ed) Advances in agronomy, vol 120. Elsevier, Amsterdam, pp 129–172

    Google Scholar 

  5. Peng HY et al (2022) Enhanced removal of Cr(VI) from wastewater by dielectric barrier discharge plasma coupled with TiO2/rGO nanocomposites: catalytic performance and reduction mechanism. Sep Purif Technol 298:121609

    Article  CAS  Google Scholar 

  6. Sun HM et al (2023) Photocatalytic reduction performance and mechanisms of Cr(VI) by illite-g-C3N4 under visible light. Appl Surf Sci 608:155226

    Article  CAS  Google Scholar 

  7. Rahmat ST et al (2020) Synthesis of rutile TiO2 nanowires by thermal oxidation of titanium in the presence of KOH and their ability to photoreduce Cr(VI) ions. J Alloys Compd 812:152094

    Article  CAS  Google Scholar 

  8. Verma AK, Dash RR, Bhunia P (2012) A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environ Manag 93(1):154–168

    Article  CAS  Google Scholar 

  9. Gheju M, Balcu I (2011) Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations. J Hazard Mater 196:131–138

    Article  CAS  PubMed  Google Scholar 

  10. Xu HY et al (2014) Investigation of pH evolution with Cr(VI) removal in electrocoagulation process: proposing a real-time control strategy. Chem Eng J 239:132–140

    Article  CAS  Google Scholar 

  11. Bajpai S et al (2012) Application of central composite design approach for removal of chromium (VI) from aqueous solution using weakly anionic resin: modeling, optimization, and study of interactive variables. J Hazard Mater 227:436–444

    Article  PubMed  Google Scholar 

  12. Zhang S et al (2019) Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: a critical review. Catal Today 335:65–77

    Article  CAS  Google Scholar 

  13. Zhang XJ et al (2017) High photocatalytic performance of high concentration Al-doped ZnO nanoparticles. Sep Purif Technol 172:236–241

    Article  CAS  Google Scholar 

  14. Kumari V et al (2023) TiO2–CeO2 assisted heterostructures for photocatalytic mitigation of environmental pollutants: a comprehensive study on band gap engineering and mechanistic aspects. Inorg Chem Commun 151:110564

    Article  CAS  Google Scholar 

  15. Sharma S et al (2021) Solution combustion synthesized TiO2/Bi2O3/CuO nano-composites and their photocatalytic activity using visible LEDs assisted photoreactor. Inorg Chem Commun 125:108418

    Article  CAS  Google Scholar 

  16. Zerjav G et al (2017) Improved electron-hole separation and migration in anatase TiO2 nanorod/reduced graphene oxide composites and their influence on photocatalytic performance. Nanoscale 9(13):4578–4592

    Article  CAS  PubMed  Google Scholar 

  17. Chen XB, Liu L, Huang FQ (2015) Black titanium dioxide (TiO2) nanomaterials. Chem Soc Rev 44(7):1861–1885

    Article  CAS  PubMed  Google Scholar 

  18. Sharma S et al (2022) TiO2/SnO2 nano-composite: new insights in synthetic, structural, optical and photocatalytic aspects. Inorg Chim Acta 529:120640

    Article  CAS  Google Scholar 

  19. Al Kausor M, Chakrabortty D (2021) Graphene oxide based semiconductor photocatalysts for degradation of organic dye in waste water: a review on fabrication, performance enhancement and challenges. Inorg Chem Commun 129:108630

    Article  CAS  Google Scholar 

  20. Hua CY et al (2014) Water-phase strategy for synthesis of TiO2-graphene composites with tunable structure for high performance photocatalysts. Appl Surf Sci 317:648–656

    Article  Google Scholar 

  21. Jiang M et al (2022) Photocatalytic degradation of xanthate in flotation plant tailings by TiO2/graphene nanocomposites. Chem Eng J 431:134104

    Article  CAS  Google Scholar 

  22. Lu ZY et al (2015) Mechanism of UV-assisted TiO2/reduced graphene oxide composites with variable photodegradation of methyl orange. RSC Adv 5(89):72916–72922

    Article  CAS  Google Scholar 

  23. Shoueir K, Mohanty A, Janowska I (2022) Industrial molasses waste in the performant synthesis of few-layer graphene and its Au/Ag nanoparticles nanocomposites. Photocatalytic and supercapacitance applications. J Clean Prod 351:131540

    Article  CAS  Google Scholar 

  24. Jiang LB et al (2018) Construction of an all-solid-state Z-scheme photocatalyst based on graphite carbon nitride and its enhancement to catalytic activity. Environm Sci Nano 5(3):599–615

    Article  CAS  Google Scholar 

  25. Geng JJ et al (2022) Enhanced removal of Cr(VI) from aqueous solutions by polymer-mediated nitrogen-rich reduced graphene oxide. J Hazard Mater 436:129184

    Article  CAS  PubMed  Google Scholar 

  26. Zikalala SA et al (2020) Tailoring TiO2 through N doping and incorporation of amorphous carbon nanotubes via a microwave-assisted hydrothermal method. J Environ Chem Eng 8(5):104082

    Article  CAS  Google Scholar 

  27. Zhen Q et al (2018) Honeycomb-like TiO2@GO nanocomposites for the photodegradation of oxytetracycline. Mater Lett 228:318–321

    Article  CAS  Google Scholar 

  28. Mohammadi M et al (2019) Enhancement of visible and UV light photocatalytic activity of rGO–TiO<sub>2</sub> nanocomposites: the effect of TiO<sub>2</sub>/graphene oxide weight ratio. Ceram Int 45(10):12625–12634

    Article  CAS  Google Scholar 

  29. Hu J et al (2015) Synthesis of TiO2 nanowire/reduced graphene oxide nanocomposites and their photocatalytic performances. Chem Eng J 263:144–150

    Article  CAS  Google Scholar 

  30. Gong Y et al (2017) Synthesis of highly dispersed and versatile anatase TiO2 nanocrystals on graphene sheets with enhanced photocatalytic performance for dye degradation. J Mater Sci Mater Electron 28(24):18883–18890

    Article  CAS  Google Scholar 

  31. Mou ZG et al (2014) TiO2 nanoparticles-functionalized N-doped graphene with superior interfacial contact and enhanced charge separation for photocatalytic hydrogen generation. ACS Appl Mater Interfaces 6(16):13798–13806

    Article  CAS  PubMed  Google Scholar 

  32. Zhang WW et al (2016) Hydrothermal synthesis and photoelectrochemical performance enhancement of TiO2/graphene composite in photo-generated cathodic protection. Appl Surf Sci 382:128–134

    Article  CAS  Google Scholar 

  33. Lu ZY et al (2015) Mechanism of UV-assisted TiO<sub>2</sub>/reduced graphene oxide composites with variable photodegradation of methyl orange. RSC Adv 5(89):72916–72922

    Article  CAS  Google Scholar 

  34. Hunge YM et al (2020) Enhanced photocatalytic performance of ultrasound treated GO/TiO2 composite for photocatalytic degradation of salicylic acid under sunlight illumination. Ultrason Sonochem 61:104849

    Article  CAS  PubMed  Google Scholar 

  35. Yamada Y, Kanemitsu Y (2012) Determination of electron and hole lifetimes of rutile and anatase TiO2 single crystals. Appl Phys Lett 101(13):133907

    Article  Google Scholar 

  36. Zhang YX et al (2014) Grapheme TiO2 nanocomposites with high photocatalytic activity for the degradation of sodium pentachlorophenol. J Environ Sci 26(10):2114–2122

    Article  Google Scholar 

  37. Mukhopadhyay S et al (2016) Shape transition of TiO2 nanocube to nanospindle embedded on reduced graphene oxide with enhanced photocatalytic activity. Cryst Growth Des 16(12):6922–6932

    Article  CAS  Google Scholar 

  38. Akhavan O, Ghaderi E (2009) Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J Phys Chem C 113(47):20214–20220

    Article  CAS  Google Scholar 

  39. Chen B et al (2016) Graphene oxide-assisted synthesis of microsized ultrathin single-crystalline anatase TiO2 nanosheets and their application in dye-sensitized solar cells. ACS Appl Mater Interfaces 8(4):2495–2504

    Article  CAS  PubMed  Google Scholar 

  40. Yang SG, Liu YZ, Sun C (2006) Preparation of anatase TiO2/Ti nanotube-like electrodes and their high photoelectrocatalytic activity for the degradation of PCP in aqueous solution. Appl Catal A Gen 301(2):284–291

    Article  CAS  Google Scholar 

  41. Zhang B, Wachs IE (2021) Identifying the catalytic active site for propylene metathesis by supported ReO<i><sub>x</sub></i> catalysts. ACS Catal 11(4):1962–1976

    Article  CAS  Google Scholar 

  42. Khamboonrueang D et al (2018) TiO2 center dot rGO nanocomposite as a photo catalyst for the reduction of Cr6+. Mater Res Bull 107:236–241

    Article  CAS  Google Scholar 

  43. Peng GM et al (2016) In situ grown TiO2 nanospindles facilitate the formation of holey reduced graphene oxide by photodegradation. ACS Appl Mater Interfaces 8(11):7403–7410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu L et al (2017) Reduced graphene oxide (rGO) decorated TiO2 microspheres for visible-light photocatalytic reduction of Cr(VI). J Alloys Compd 690:771–776

    Article  CAS  Google Scholar 

  45. Sonmez B, Baser E, Gel OY (2022) Photodecolourization of methylene blue by Fe- and Cd-incorporated titania-supported zeolite clinoptilolite. Microporous Mesoporous Mater 340:112001

    Article  CAS  Google Scholar 

  46. Xu L et al (2019) Persulfate activation towards organic decomposition and Cr(VI) reduction achieved by a novel CQDs–TiO2–x/rGO nanocomposite. Chem Eng J 373:238–250

    Article  CAS  Google Scholar 

  47. Zhang JJ et al (2018) Direct carbonization of Zn/Co zeolitic imidazolate frameworks for efficient adsorption of rhodamine B. Chem Eng J 347:640–647

    Article  CAS  Google Scholar 

  48. Gao WY et al (2016) The role of reduction extent of graphene oxide in the photocatalytic performance of Ag/AgX (X = Cl, Br)/rGO composites and the pseudo-second-order kinetics reaction nature of the Ag/AgBr system. Phys Chem Chem Phys 18(27):18219–18226

    Article  CAS  PubMed  Google Scholar 

  49. Kamat PV, Jin S (2018) Semiconductor photocatalysis: “tell us the complete story!” ACS Energy Lett 3(3):622–623

    Article  CAS  Google Scholar 

  50. Loh KP et al (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2(12):1015–1024

    Article  CAS  PubMed  Google Scholar 

  51. Li SS et al (2010) Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4(6):3169–3174

    Article  CAS  PubMed  Google Scholar 

  52. Geng W, Liu HX, Yao XJ (2013) Enhanced photocatalytic properties of titania-graphene nanocomposites: a density functional theory study. Phys Chem Chem Phys 15(16):6025–6033

    Article  CAS  PubMed  Google Scholar 

  53. Piskorz W et al (2019) Attaching titania clusters of various size to reduced graphene oxide and its impact on the conceivable photocatalytic behavior of the junctions-a DFT/D plus U and TD DFTB modeling. J Phys Condens Matter 31(40):404001

    Article  CAS  PubMed  Google Scholar 

  54. Zhao Y et al (2017) Enhanced removal of toxic Cr(VI) in tannery wastewater by photoelectrocatalysis with synthetic TiO2 hollow spheres. Appl Surf Sci 405:102–110

    Article  CAS  Google Scholar 

  55. Al-Mamun MR et al (2021) Photocatalytic performance assessment of GO and Ag co-synthesized TiO2 nanocomposite for the removal of methyl orange dye under solar irradiation. Environ Technol Innov 22:101537

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant No. 21906053) and China Institute of Water Resources and Hydropower Research (IWHR-SKL-201912).

Funding

National Natural Science Foundation of China (No. 21906053), China Institute of Water Resources and Hydropower Research (IWHR-SKL-201912).

Author information

Authors and Affiliations

Authors

Contributions

YW and XD are responsible for writing the paper. JZ, ML, and DF are responsible for reviewing the paper. JP and QZ are responsible for the experimental part of the paper.

Corresponding author

Correspondence to Jinghong Zhang.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Du, X., Pan, J. et al. Study on the Enhancement of Efficiency, Photocatalytic Kinetics, and Mechanism of Trace GO on TiO2 for Cr(VI) Removal Under Visible Light Conditions. Catal Surv Asia 28, 135–147 (2024). https://doi.org/10.1007/s10563-023-09414-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-023-09414-x

Keywords

Navigation