Skip to main content
Log in

Design of Water-Tolerant Solid Acids: A Trade-Off Between Hydrophobicity and Acid Strength and their Catalytic Performance in Esterification

  • Review Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Water, as a byproduct in esterification, tends to adsorb on solid acid catalysts, causing loss of active components or decomposition of framework and thereby decreasing their reactivity and durability, while the development of water-tolerant solid acids is expected to solve these problems. In this review, the recent developments of major kinds of water-tolerant solid acids including zeolite, mesoporous silica, metal organic framework-based catalyst, magnetic nanoparticles, and polymeric catalyst are discussed in detail. Special attention has been paid to understand the role of hydrophobicity, acid strength, and structure of water-tolerant solid acids in catalytic performance and their stability. From the literature survey, it is found that despite the modified zeolites have a water contact angle as large as 160°, but their acid strength need to be improved and their small micropore sizes restrict their use in catalyzing the esterification of bulky molecules. In contrast, solid acids with abundant acid sites, suitable hydrophobicity, and abundant mesopores or macropores usually exhibit high activity and reusability. Among all the known solid acids, polystyrene-supported acidic ionic liquid catalysts (PS-CH2-[SO3H-pIM] [HSO4]) show a high yield of n-butyl acetate with 99.1% and high reusability of 13 times, which is a breakthrough over the traditional. This review aims to offer a comprehensive understanding for the water-tolerant solid acid catalysts in esterification.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig.21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Jermy BR, Pandurangan A (2005) A highly efficient catalyst for the esterification of acetic acid using n-butyl alcohol. Mol Catal 237:146–154

    Article  CAS  Google Scholar 

  2. Sirsam R, Hansora D, Usmani GA (2016) A mini-review on solid acid catalysts for esterification reactions. J Inst Eng India Ser E 97:167–181

    Article  CAS  Google Scholar 

  3. Liu WT, Tan CS (2001) Liquid-Phase Esterification of Propionic Acid with n-Butanol. Ind Eng Chem Res 40:3281–3286

    Article  CAS  Google Scholar 

  4. Lunagariya J, Dhar A, Vekariya RL (2017) Efficient esterification of n-butanol with acetic acid catalyzed by the Bronsted acidic ionic liquids: influence of acidity. RSC Adv 7:5412–5420

    Article  CAS  Google Scholar 

  5. Izumi Y, Urabe K (1994) 1.1 acidic salts of heteropolyacids as solid acid catalysts for liquid-phase organic reactions. Stud Surf Sci Catal 90:1–8

    Article  CAS  Google Scholar 

  6. Oliveira CF, Dezaneti LM, Garcia FAC, de Macedo JL, Dias JA, Dias SCL, Alvim KSP (2010) Esterification of oleic acid with ethanol by 12-tungstophosphoric acid supported on zirconia. Appl Catal A-Gen 372(2):153–161

    Article  CAS  Google Scholar 

  7. Li J, Wang X, Zhu W, Cao F (2010) Zn1.2H0.6PW12O40 Nanotubes with double acid sites as heterogeneous catalysts for the production of biodiesel from waste cooking oil. Chemsuschem 2:177–183

    Article  CAS  Google Scholar 

  8. Shi W, Zhao J, Yuan X, Wang S, Wang X, Huo M (2012) Effects of bronsted and lewis acidities on catalytic activity of heteropolyacids in transesterification and esterification reactions. Chem Eng Technol 35:347–352

    Article  CAS  Google Scholar 

  9. Freitas EF, Paiva MF, Dias SCL, Dias JA (2017) Generation and characterization of catalytically active sites of heteropolyacids on zeolite Y for liquid-phase esterification. Catal Today 289:70–77

    Article  CAS  Google Scholar 

  10. Freitas EF, Araújo ÁAL, Paiva MF, Dias SCL, Dias JA (2018) Comparative acidity of BEA and Y zeolite composites with 12-tungstophosphoric and 12-tungstosilicic acids. Mol Catal 458:152–160

    Article  CAS  Google Scholar 

  11. Lucas N, Gurrala L, Athawale A (2019) Heteropolyacids supported on mesoporous AlSBA-15 as efficient catalysts for esterification of levulinic acid. J Porous Mat 26:1335–1343

    Article  Google Scholar 

  12. Karimi B, Vafaeezadeh M (2012) SBA-15-functionalized sulfonic acid confined acidic ionic liquid: a powerful and water-tolerant catalyst for solvent-free esterifications. Chem Commun 48:3327–3329

    Article  CAS  Google Scholar 

  13. Karimi B, Vafaeezadeh M (2013) SBA-15 functionalized sulfonic acid containing a confined hydrophobic and acidic ionic liquid: a highly efficient catalyst for solvent-free thioacetalization of carbonyl compounds at room temperature. Rsc Adv 3:23207–23211

    Article  CAS  Google Scholar 

  14. Dai L, Zhao Q, Fang M, Liu R, Dong M, Jiang T (2017) Catalytic activity comparison of Zr-SBA-15 immobilized by a Brønsted-Lewis acidic ionic liquid in different esterifications. Rsc Adv 7:32427–32435

    Article  CAS  Google Scholar 

  15. Hassan HM, Betiha MA, Elshaarawy RF, Ahmed EA (2018) Facile tailoring of hierarchical mesoporous AlSBA-15 by ionic liquid and their applications in heterogeneous catalysis. J Porous Mat 25:63–73

    Article  CAS  Google Scholar 

  16. Leng Y, Zhang Y, Huang C, Liu X, Wu Y (2013) Catalytic conversion of cellulose to cellulose acetate propionate (CAP) over SO42-/ZrO2 solid acid catalyst. B Korean Chem Soc 34:1160–1164

    Article  CAS  Google Scholar 

  17. Yang CH, Fan MQ, Chen G, Zhang L (2013) Preparation and characterization of SO42-/Fe2O3-TiO2-Nd2O3 catalyst. J Iran Chem Soc 10:407–413

    Article  CAS  Google Scholar 

  18. Wang HG, Shi GL, Yu F, Li RF (2016) Mild synthesis of biofuel over a microcrystalline S2O82-/ZrO2 catalyst. Fuel Process Technol 145:9–13

    Article  CAS  Google Scholar 

  19. Zhou LH, Niu Y, Yang JB, Li CG, Guo XT, Li L, Qiu T (2016) Reaction kinetics for synthesis of isopropyl myristate catalyzed by sulfated titania. Korean J Chem Eng 33:2478–2485

    Article  CAS  Google Scholar 

  20. Lei Q, Li D, Li JF, Liu CL, Xu CL, Dong WS (2019) Glycerol Esterification to Glyceryl Diacetate over SO42-/W-Zr Complex Solid Super Acid Catalysts. ChemistrySelect 9:2780–2786

    Article  CAS  Google Scholar 

  21. Buluklu AD, Sert E, Karakus S, Atalay FS (2014) Development of kinetic mechanism for the esterification of acrylic acid with hexanol catalyzed by ion-exchange resin. Int J Chem Kinet 46:197–205

    Article  CAS  Google Scholar 

  22. Trombettoni V, Lanari D, Prinsen P, Luque R, Marrocchi A, Vaccaro L (2018) Recent advances in sulfonated resin catalysts for efficient biodiesel and bio-derived additives production. Prog Energ Combust 65:136–162

    Article  Google Scholar 

  23. Bringue R, Ramirez E, Iborra M, Tejero J, Cunill F (2019) Esterification of furfuryl alcohol to butyl levulinate over ion-exchange resins. Fuel 257:116010

    Article  CAS  Google Scholar 

  24. Corma A (1997) From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 97:2373–2420

    Article  CAS  PubMed  Google Scholar 

  25. Eroshenko V, Regis RC, Soulard M, Patarin J (2001) Energetics: a new field of applications for hydrophobic zeolites. J Am Cheical Soc 123(33):8129–8130

    Article  CAS  Google Scholar 

  26. Serrano DP, Aguado J, Escola JM, Rodriguez AJ, Peral A (2006) Hierarchical zeolites with enhanced textural and catalytic properties synthesized from organo functionalized seeds. Chem Mater 18:2462–2464

    Article  CAS  Google Scholar 

  27. Wang H, Wang L, He SH, Xiao F (2018) Enhancement of catalytic properties by adjusting molecular diffusion in nanoporous catalysts. Adv Catal 62:1–47

    Google Scholar 

  28. Fawaz EG, Salam DA, Daou TJ (2020) Esterification of linoleic acid using HZSM-5 zeolites with different Si/Al ratios. Micropor Mesopor Mat 294:109855

    Article  CAS  Google Scholar 

  29. Hara M, Yoshida T, Takagaki A, Takata T, Kondo JN, Hayashi S, Domen K (2004) A carbon material as a strong protonic acid. Angew Chem Int Edit 43:2955–2958

    Article  CAS  Google Scholar 

  30. Juan JC, Jiang Y, Meng X, Cao W, Yarmo MA, Zhang J (2007) Supported zirconium sulfate on carbon nanotubes as water-tolerant solid acid catalyst. Mater Res Bull 42:1278–1285

    Article  CAS  Google Scholar 

  31. Peng L, Philippaerts A, Ke X, Van Noyen J, De Clippel F, Van Tendeloo G, Jacobs PA, Sels BF (2010) Preparation of sulfonated ordered mesoporous carbon and its use for the esterification of fatty acids. Catal Today 150:140–146

    Article  CAS  Google Scholar 

  32. Yu H, Niu S, Lu C, Li J, Yang Y (2017) Sulfonated coal-based solid acid catalyst synthesis and esterification intensification under ultrasound irradiation. Fuel 208:101–110

    Article  CAS  Google Scholar 

  33. Zhang X, Fan Q, Yang H (2018) Green synthesis of functionalized graphene and their use as solid acid catalysts. J Mater Res 33:3946–3952

    Article  CAS  Google Scholar 

  34. Kadib A, Finiels A, Brunel D (2013) Sulfonic acid functionalised ordered mesoporous materials as catalysts for fine chemical synthesis. Chem Commun 49:9073–9076

    Article  CAS  Google Scholar 

  35. Shagufta AI, Dhar R (2017) Sulfonic acid-functionalized solid acid catalyst in esterification and transesterification reactions. Catal Surv Asia 21:53–69

    Article  CAS  Google Scholar 

  36. Martínez-Edo G, Balmori A, Pontón I, Martí del Rio A, Sánchez-García D (2018) Functionalized ordered mesoporous silicas (MCM-41): Synthesis and applications in catalysis. Catalysts 8:617

    Article  CAS  Google Scholar 

  37. Cabrera-Munguia D, González H, Tututi-Ríos E, Gutiérrez- Alejandre A, Rico J (2018) Acid properties of M-SBA-15 and M-SBA-15-SO3H (M=Al, Ti) materials and their role on esterification of oleic acid. J Mater Res 33:3634–3645

    Article  CAS  Google Scholar 

  38. Doustkhah E, Lin JJ, Rostamnia S, Len C, Luque R, Luo XL, Bando Y, Wu KCW, Kim J, Yamauchi Y, Ide Y (2019) Development of sulfonic-acid-functionalized mesoporous materials: synthesis and catalytic applications. Chem-Eur J 25:1614–1635

    Article  CAS  PubMed  Google Scholar 

  39. Wang Y, You J, Liu B (2019) Preparation of mesoporous silica supported sulfonic acid and evaluation of the catalyst in esterification reactions. React Kinet Mech Cat 128:493–505

    Article  CAS  Google Scholar 

  40. Kumaravel S, Thiripuranthagan S, Radhakrishnan R, Erusappan E, Durai M, Devarajan A, Mukannan A (2019) Liquid phase esterification of levulinic acid into ethyl levulinate over sulphobenzylated nanoporous Al-SBA-15 catalyst. J Nanosci Nanotechno 19:6965–6977

    Article  CAS  Google Scholar 

  41. Sadaba I, Lopez Granados M, Riisager A, Taarning E (2015) Deactivation of solid catalysts in liquid media: the case of leaching of active sites in biomass conversion reactions. Green Chem 17:4133–4145

    Article  CAS  Google Scholar 

  42. Chen G, Wang X, Jiang Y, Mu X, Liu H (2019) Insights into deactivation mechanism of sulfonated carbonaceous solid acids probed by cellulose hydrolysis. Catal Today 319:25–30

    Article  CAS  Google Scholar 

  43. Badamshina ER, Gafurova MP, Estrin I (2010) Modification of carbon nanotubes and synthesis of polymeric composites involving the nanotubes. Russ Chem Rev 45

  44. Brahmkhatri V, Patel A (2010) Supported heteropolyacids: sytnhesis, characterization and effect of supports on esterification reactions. Kinet Catal 51:380–384

    Article  CAS  Google Scholar 

  45. Okuhara T (2002) Water-tolerant solid acid catalysts. Chem Rev 102:3641–3666

    Article  CAS  PubMed  Google Scholar 

  46. Inumaru K, Ishihara T, Kamiya Y, Okuhara T, Yamanaka S (2007) Water-tolerant, highly active solid acid catalysts composed of the keggin-type polyoxometalate H3PW12O40 immobilized in hydrophobic nanospaces of organomodified mesoporous silica. Angew Chem Int Edit 46:7625–7628

    Article  CAS  Google Scholar 

  47. Morales G, Athens GL, Chmelka F, Van Grieken R, Melero JA (2008) Aqueous-sensitive reaction sites in sulfonic acid-functionalized mesoporous silicas. J Catal 254:205–217

    Article  CAS  Google Scholar 

  48. Liu FJ, Huang K, Zheng AM, Xiao FS, Dai S (2018) Hydrophobic solid acids and their catalytic applications in green and sustainable chemistry. Acs Catal 8:372–391

    Article  CAS  Google Scholar 

  49. Gounder R (2014) Hydrophobic microporous and mesoporous oxides as Brønsted and Lewis acid catalysts for biomass conversion in liquid water. Catal Sci Technol 4:2877–2886

    Article  CAS  Google Scholar 

  50. Chen F, Li Y, Huang A (2020) Hydrophilicity reversal by post-modification: hydrophobic zeolite FAU and LTA coatings on stainless-steel-net for oil/water separation. Colloid Surface A 601:124936

    Article  CAS  Google Scholar 

  51. Kang S, Chun J, Park N, Lee SM, Kim HJ, Son SU (2015) Hydrophobic zeolites coated with microporous organic polymers: adsorption behavior of ammonia under humid conditions. Chem Commun 51:11814–11817

    Article  CAS  Google Scholar 

  52. Gounder R, Davis ME (2013) Beyond shape selective catalysis with zeolites: hydrophobic void spaces in zeolites enable catalysis in liquid water. AICHE J 59:3349–3358

    Article  CAS  Google Scholar 

  53. Muir B, Bajda T (2016) Organically modified zeolites in petroleum compounds spill cleanup-Production, efficiency, utilization. Fuel Process Technol 149:153–162

    Article  CAS  Google Scholar 

  54. Zapata PA, Faria J, Ruiz MP, Jentoft RE, Resasco DE (2012) Hydrophobic zeolites for biofuel upgrading reactions at the liquid-liquid interface in water/oil emulsions. J Am Chem Soc 134:8570–8578

    Article  CAS  PubMed  Google Scholar 

  55. Liu L, Singh R, Li G, Xiao G, Webley PA, Zhai Y (2012) Synthesis of hydrophobic zeolite X@SiO2 core-shell composites. Mater Chem Phys 133:1144–1151

    Article  CAS  Google Scholar 

  56. Xu S, Sheng H, Ye T, Hu D, Liao S (2016) Hydrophobic aluminosilicate zeolites as highly efficient catalysts for the dehydration of alcohols. Catal Commun 78:75–79

    Article  CAS  Google Scholar 

  57. Vu HT, Harth FM, Wilde N (2018) Silylated Zeolites with Enhanced Hydrothermal Stability for the Aqueous-Phase Hydrogenation of Levulinic Acid to gamma-Valerolacton. Front Chem 6

  58. Pino N, Bui T, Hincapié G, López D, Resasco DE (2018) Hydrophobic zeolites for the upgrading of biomass-derived short oxygenated compounds in water/oil emulsions. Appl Catal A-Gen 559:94–101

    Article  CAS  Google Scholar 

  59. Karimi B, Mirzaei HM (2013) The influence of hydrophobic/hydrophilic balance of the mesoporous solid acid catalysts in the selective dehydration of fructose into HMF. RSC Adv 3:20655–20661

    Article  CAS  Google Scholar 

  60. Manayil JC, dos Santos VC, Jentoft FC, Granollers Mesa M, Lee AF, Wilson K (2017) Octyl Co-grafted PrSO3H/SBA-15: Tunable Hydrophobic Solid Acid Catalysts for Acetic Acid Esterification. ChemCatChem 9:2231–2238

    Article  CAS  Google Scholar 

  61. Xu X, Jiang E, Lei Z (2018) Esterification of guaiacol with octanoic acid over functionalized mesoporous silica. Renew Energ 119:439–446

    Article  CAS  Google Scholar 

  62. Zillillah TG, Li Z (2012) Highly active, stable, and recyclable magnetic nano-size solid acid catalysts: efficient esterification of free fatty acid in grease to produce biodiesel. Green Chem 14:3077–3086

    Article  CAS  Google Scholar 

  63. Duan X, Liu Y, Zhao Q, Wang X, Li S (2013) Water-tolerant heteropolyacid on magnetic nanoparticles as efficient catalysts for esterification of free fatty acid. RSC Adv 3:13748–13755

    Article  CAS  Google Scholar 

  64. Mobaraki A, Movassagh B, Karimi B (2014) Hydrophobicity- enhanced magnetic solid sulfonic acid: A simple approach to improve the mass transfer of reaction partners on the surface of the heterogeneous catalyst in water-generating reactions. Appl Catal A-Gen 472:123–133

    Article  CAS  Google Scholar 

  65. Zhang H, Li H, Pan H, Wang A, Souzanchi S, Xu C, Yang S (2018) Magnetically recyclable acidic polymeric ionic liquids decorated with hydrophobic regulators as highly efficient and stable catalysts for biodiesel production. Appl Energ 223:416–429

    Article  CAS  Google Scholar 

  66. Xu Z, Zhao G, Hedin N, Xu M, Liu J, Ullah L (2020) Fast Catalytic Esterification Using a Hydrophobized Zr-MOF with Acidic Ionic Liquid Linkers. ChemistrySelect 5:1153–1156

    Article  CAS  Google Scholar 

  67. Long W, Jones CW (2011) Hybrid sulfonic acid catalysts based on silica-supported poly (styrene sulfonic acid) brush materials and their application in ester hydrolysis. ACS Catal 1:674–681

    Article  CAS  Google Scholar 

  68. Xu Z, Wan H, Miao J, Han M, Yang C, Guan G (2010) Reusable and efficient polystyrene-supported acidic ionic liquid catalyst for esterifications. J Mol Catal A-Chem 332:152–157

    Article  CAS  Google Scholar 

  69. Andrijanto E, Dawson E, Brown DR (2012) Hypercrosslinked polystyrene sulphonic acid catalysts for the esterification of free fatty acids in biodiesel synthesis. Appl Catal B- Environ 115–116:261–268

    Article  CAS  Google Scholar 

  70. Shao Y, Wan H, Miao J, Shao G (2013) Synthesis of an immobilized Brønsted acidic ionic liquid catalyst on chloromethyl polystyrene grafted silica gel for esterification. React Kinet Mech Cat 109:149–158

    Article  CAS  Google Scholar 

  71. Zhang X, Zhao Y, Yang Q (2014) PS-SO3H@phenylenesilica with yolk-double-shell nanostructures as efficient and stable solid acid catalysts. J Catal 320:180–188

    Article  CAS  Google Scholar 

  72. Vinu A, Hossain KZ, Ariga K (2005) Recent advances in functionalization of mesoporous silica. J Nanosci Nano techno 5:347–371

    Article  CAS  Google Scholar 

  73. Melero JA, van Grieken R, Morales G (2006) Advances in the synthesis and catalytic applications of organo sulfonic- functionalized mesostructured materials. Chem Rev 106:3790–3812

    Article  CAS  PubMed  Google Scholar 

  74. Zhong R, Sels BF (2018) Sulfonated mesoporous carbon and silica-carbon nanocomposites for biomass conversion. Appl Catal B: Environ 236:518–545

    Article  CAS  Google Scholar 

  75. Manayil JC, Lee AF, Wilson K (2019) Functionalized Periodic Mesoporous Organosilicas: Tunable Hydrophobic Solid Acids for Biomass Conversion. Molecules 24:239

    Article  PubMed Central  CAS  Google Scholar 

  76. Chung KH, Park BG (2009) Esterification of oleic acid in soybean oil on zeolite catalysts with different acidity. J Ind Eng Chem 15:388–392

    Article  CAS  Google Scholar 

  77. Chen NY (1976) Hydrophobic properties of zeolites. J Phys Chem 80:60–64

    Article  CAS  Google Scholar 

  78. Namba S, Hosonuma N, Yashima T (1981) Catalytic application of hydrophobic properties of high-silica zeolites: I. Hydrolysis of ethyl acetate in aqueous solution. J Catal 72:16–20

    Article  CAS  Google Scholar 

  79. Sun K, Lu J, Ma L, Han Y, Fu Z, Ding J (2015) A comparative study on the catalytic performance of different types of zeolites for biodiesel production. Fuel 158:848–854

    Article  CAS  Google Scholar 

  80. Ajaikumar S, Pandurangan A (2007) Esterification of alkyl acids with alkanols over MCM-41 molecular sieves: Influence of hydrophobic surface on condensation reaction. J Mol Catal A-Chem 266:1–10

    Article  CAS  Google Scholar 

  81. Bhagiyalakshmi M, Priya SV, Mabel JH, Palanichamy M, Murugesan V (2008) Effect of hydrophobic and hydrophilic properties of solid acid catalysts on the esterification of maleic anhydride with ethanol. Catal Commun 9:2007–2012

    Article  CAS  Google Scholar 

  82. Doyle AM, Albayati TM, Abbas AS, Alismaeel ZT (2016) Biodiesel production by esterification of oleic acid over zeolite Y prepared from kaolin. Renew Energ 97:19–23

    Article  CAS  Google Scholar 

  83. Prinsen P, Luque R, Gonzalezarellano C (2018) Zeolite catalyzed palmitic acid esterification. Micropor Mesopor Mater 262:133–139

    Article  CAS  Google Scholar 

  84. Han X, Wang L, Li J, Zhan X, Chen J, Yang J (2011) Tuning the hydrophobicity of ZSM-5 zeolites by surface silanization using alkyltrichlorosilanes. Appl Sur Sci 257:9525–9531

    Article  CAS  Google Scholar 

  85. Zapata PA, Huang Y, Gonzalez-Borja MA, Resasco DE (2013) Silylated hydrophobic zeolites with enhanced tolerance to hot liquid water. J Catal 308:82–97

    Article  CAS  Google Scholar 

  86. Petkowicz DI, Canal S, Finger PH, Mignoni ML, dos Santos JHZ (2017) Synthesis of hybrid zeolites using a solvent-free method in the presence of different organosilanes. Micropor Mesopor Mater 241:98–106

    Article  CAS  Google Scholar 

  87. Zhang K, Li C, Liu Z, Wang M, Yan X, Xi H (2017) Tailoring hierarchical zeolites with designed cationic surfactants and their high catalytic performance. Chem-Asian J 12:2711–2719

    Article  CAS  PubMed  Google Scholar 

  88. Sakthivel T, Reid DL, Goldstein I, Hench L, Seal S (2013) Hydrophobic high surface area zeolites derived from fly ash for oil spill remediation. Environ Sci Technol 47:5843–5850

    Article  CAS  PubMed  Google Scholar 

  89. Bian C, Wu Q, Zhang J, Chen F, Pan S, Wang L, Meng X, Mueller U, Feyen M, Yilmaz B (2015) A new zeolite formed from interlayer expansion of the precursor COK-5. Micropor Mesopor Mater 214:204–209

    Article  CAS  Google Scholar 

  90. Li D, Wu Z, Zhou D, Xia Y, Lu X, He H, Xia Q (2019) One-step synthesis of hybrid zeolite with exceptional hydrophobicity to accelerate the interfacial reaction at low temperature. Micropor Mesopor Mater 280:195–202

    Article  CAS  Google Scholar 

  91. Van Rhijn WM, De Vos DE, Sels BF, Bossaert WD (1998) Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions. Chem Commun: 317–318

  92. Dı́az I, Mohino F, Pérez-Pariente JN, Sastre E, (2001) Synthesis, characterization and catalytic activity of MCM-41-type mesoporous silicas functionalized with sulfonic acid. Appl Catal A-Gen 205:19–30

    Article  Google Scholar 

  93. Li C, Yang J, Wang P, Liu J, Yang Q (2009) An efficient solid acid catalyst: Poly-p-styrenesulfonic acid supported on SBA-15 via surface-initiated ATRP. Micropor Mesopor Mater 123:228–233

    Article  CAS  Google Scholar 

  94. Testa ML, La Parola V, Venezia AM (2010) Esterification of acetic acid with butanol over sulfonic acid-functionalized hybrid silicas. Catal Today 158:109–113

    Article  CAS  Google Scholar 

  95. Manayil JC, Inocêncio CV, Lee AF, Wilson K (2016) Mesoporous sulfonic acid silicas for pyrolysis bio-oil upgrading via acetic acid esterification. Green Chem 18:1387–1394

    Article  CAS  Google Scholar 

  96. Dacquin JP, Cross HE, Robert Brown D, Düren T, Williams JJ, Leea AF, Wilson K (2010) Interdependent lateral interactions, hydrophobicity and acid strength and their influence on the catalytic activity of nanoporous sulfonic acid silicas. Green Chem 12:1383–2139

    Article  CAS  Google Scholar 

  97. Mbaraka IK, Shanks BH (2005) Design of multifunctionalized mesoporous silicas for esterification of fatty acid. J Catal 229:365–373

    Article  CAS  Google Scholar 

  98. Burkett SL, Sims SD, Mann S (1996) Synthesis of hybrid inorganic-organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors. Chem Commun 11:1367–1368

    Article  Google Scholar 

  99. Hong L, Xue N, Peng L, Guo X, Ding W, Chen Y (2009) The hydrophilic/ hydrophobic effect of porous solid acid catalysts on mixed liquid phase reaction of esterification. Catal Commun 10:1734–1737

    Article  CAS  Google Scholar 

  100. Sherry L, Sullivan JA (2011) The reactivity of mesoporous silica modified with acidic sites in the production of biodiesel. Catal Today 175:471–476

    Article  CAS  Google Scholar 

  101. Sánchez-Vázquez R, Pirez C, Iglesias J, Wilson K, Lee AF, Melero JA (2013) Zr-Containing Hybrid Organic-Inorganic Mesoporous Materials: Hydrophobic Acid Catalysts for Biodiesel Production. ChemCatChem 5:994–1001

    Article  CAS  Google Scholar 

  102. Kong PS, Cognet P, Pérès Y, Esvan J, Daud WMAW, Aroua MK (2018) Development of a novel hydrophobic ZrO2-SiO2 based acid catalyst for catalytic esterification of glycerol with oleic acid. Ind Eng Chem Res 57:9386–9399

    Article  CAS  Google Scholar 

  103. Xu L, Wang Y, Yang X, Hu J, Li W, Guo Y (2009) Simultaneous esterification and transesterification of soybean oil with methanol catalyzed by mesoporous Ta2O5/SiO2–[H3PW12O40/R] (R = Me or Ph) hybrid catalysts. Green Chem 11:314–317

    Article  CAS  Google Scholar 

  104. Su F, An S, Song D, Zhang X, Lu B, Guo Y (2014) Heteropoly acid and ZrO2 bifunctionalized organosilica hollow nanospheres for esterification and transesterification. J Mater Chem A 2:14127–14138

    Article  CAS  Google Scholar 

  105. Song D, An S, Sun Y, Guo Y (2016) Efficient conversion of levulinic acid or furfuryl alcohol into alkyl levulinates catalyzed by heteropoly acid and ZrO2 bifunctionalized organosilica nanotubes. J Catal 333:184–199

    Article  CAS  Google Scholar 

  106. Song D, Zhang Q, Sun Y, Zhang P, Guo YH, Hu JL (2018) Design of ordered mesoporous sulfonic acid functionalized ZrO2/organosilica bifunctional catalysts for direct catalytic conversion of glucose to ethyl levulinate. ChemCatChem 10:4953–4965

    Article  CAS  Google Scholar 

  107. Song D, Zhang P, Sun Y, Zhang Q, Guo Y (2019) Design of periodic mesoporous sulfonic acid and titanium bi-functionalized alkyl-bridged organosilica hybrid catalysts for efficient synthesis of ethyl levulinate. Micropor Mesopoous Mater 279:352–363

    Article  CAS  Google Scholar 

  108. Song D, Sun Y, Zhang Q, Zhang P, Guo Y, Leng J (2017) Fabrication of propylsulfonic acid functionalized SiO2 core/ PMO shell structured PrSO3H-SiO2@Si(R)Si nanospheres for the effective conversion of d-fructose into ethyl levulinate. Appl Catal A-Geeral 546:36–46

    Article  CAS  Google Scholar 

  109. Wang X, Zhang H, Ma J, Ma ZH (2016) Bifunctional Brønsted-Lewis solid acid as a recyclable catalyst for conversion of glucose to 5-hydroxymethylfurfural and its hydrophobicity effect. RSC Adv 6:43152–43158

    Article  CAS  Google Scholar 

  110. Kong PS, Pérès Y, Wan Daud WMA, Cognet P, Aroua MK (2019) Esterification of Glycerol with Oleic Acid Over Hydrophobic Zirconia-Silica Acid Catalyst and Commercial Acid Catalyst: Optimization and Influence of Catalyst Acidity. Front Chem 7

  111. Shylesh S, Schunemann V, Thiel WR (2010) Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew Chem Int Edit 49:3428–3459

    Article  CAS  Google Scholar 

  112. Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset JM (2011) Magnetically recoverable nanocatalysts. Chem Rev 111:3036–3075

    Article  CAS  PubMed  Google Scholar 

  113. Bagwe RP, Hilliard LR, Tan W (2006) Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 22:4357–4362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Liu L, Tao ZP, Chi HR, Wang B, Wang SM, Han ZB (2021) The applications and prospects of hydrophobic metal- organic frameworks in catalysis. Dalton Trans 50:39–58

    Article  CAS  PubMed  Google Scholar 

  115. Yang D, Gates BC (2019) Catalysis by metal organic frameworks: perspective and suggestions for future research. ACS Catal 9:1779–1798

    Article  CAS  Google Scholar 

  116. Castells-Gil J, Novio F, Padial NM, Tatay S, Ruíz-Molina D, Martí-Gastaldo C (2018) Surface Functionalization of Metal- Organic Frameworks for Improved Moisture Resistance. J Vis Exp 139

  117. Yu C, Bourrelly S, Martineau C, Saidi F, Bloch E, Lavard H, Taulelle F, Horcajada P, Serre C, Llewellyn PL, Magnier E, Devic T (2015) Functionalization of Zr-based MOFs with alkyl and perfluoroalkyl groups: the effect on the water sorption behavior. Dalton Trans 45:19687–19692

    Article  CAS  Google Scholar 

  118. Chatterjee A, Hu X, Lam FLY (2018) Towards a recyclable MOF catalyst for efficient production of furfural. Catal Today 314:129–136

    Article  CAS  Google Scholar 

  119. Okuyama K, Chen X, Takata K, Odawara D, Suzuki T, Nakata S-I, Okuhara T (2000) Water-tolerant catalysis of a silica composite of a sulfonic acid resin, Aciplex. Appl Catal A-Gen 190:253–260

    Article  CAS  Google Scholar 

  120. Alvaro M, Corma A, Das D, Fornes V, Garcia H (2004) Single-step preparation and catalytic activity of mesoporous MCM-41 and SBA-15 silicas functionalized with perfluoroalkyll sulfonic acid groups analogous to Nafion®. Chem Commun: 956–957

  121. Molnar A (2011) Nafion-silica nanocomposites: a new generation of water-tolerant solid acids of high efficiency-an update. Curr Org Chem 15:3928–3960

    Article  CAS  Google Scholar 

  122. Rostamnia S, Doustkhah E (2015) Increased SBA-15-SO3H catalytic activity through hydrophilic/ hydrophobic fluoroalkyl-chained alcohols (RFOH/SBA-15-Pr-SO3H). Synlett 26:1345–1347

    Article  CAS  Google Scholar 

  123. Chen J, Chen J, Zhang X, Gao J, Yang Q (2016) Efficient and stable PS-SO3H/SiO2 hollow nanospheres with tunable surface properties for acid catalyzed reactions. Appl Catal A-Gen 516:1–8

    Article  CAS  Google Scholar 

  124. Wei J, Zou L, Li J (2016) Fabrication of mesoporous solid acid catalysts with tunable surface wettability for efficient catalysis. New J Chem 40:4775–4780

    Article  CAS  Google Scholar 

  125. Wu Q, Peng J, Kong W, Zou Y (2017) Super-hydrophobic, stable, and swelling nanoporous solid strong acid. Kinet Catal 58:816–824

    Article  CAS  Google Scholar 

  126. Tsai CH, Chen HT, Althaus SM, Mao K, Kobayashi T, Pruski M, Lin VSY (2011) Rational catalyst design a multifunctional mesoporous silica catalyst for shifting the reaction equilibrium by removal of byproduct. ACS Catal 1:729–732

    Article  CAS  Google Scholar 

  127. Dubé D, Rat M, Shen W, Nohair B, Béland F, Kaliaguine S (2009) Perfluorinated alkylsulfonic acid functionalized periodic mesostructured organosilica: a new acidic catalyst. Appl Catal A-Gen 358:232–239

    Article  CAS  Google Scholar 

  128. Gu Y, Ogawa C, Kobayashi J, Mori Y, Kobayashi S (2006) A heterogeneous silica-supported scandium/ ionic liquid catalyst system for organic reactions in water. Angew Chem Int Edit 45:7217–7220

    Article  CAS  Google Scholar 

  129. Gu Y, Ogawa C, Kobayashi S (2007) Silica-supported sodium sulfonate with ionic liquid: a neutral catalyst system for michael reactions of indoles in water. Org Lett 9:175–178

    Article  CAS  PubMed  Google Scholar 

  130. Gu Y, Karam A, Jérôme F, Barrault J (2007) Selectivity enhancement of silica-supported sulfonic acid catalysts in water by coating of ionic liquid. Org Lett 9:3145–3148

    Article  CAS  PubMed  Google Scholar 

  131. Zhen B, Li H, Jiao Q, Li Y, Wu Q, Zhang Y (2012) SiW12O40-based ionic liquid catalysts: catalytic esterification of oleic acid for biodiesel production. Ind Eng Chem Res 51:10374–10380

    Article  CAS  Google Scholar 

  132. Liang X (2013) Novel acidic ionic liquid polymer for biodiesel synthesis from waste oils. Appl Catal A Gen 455:206–210

    Article  CAS  Google Scholar 

  133. Gu Y, Ogawa C, Kobayashi S (2007) Silica-supported sodium sulfonate with ionic liquid: a neutral catalyst system for Michael reactions of indoles in water. ChemInform 38:175–178

    Google Scholar 

  134. Miao J, Wan H, Guan G (2011) Synthesis of immobilized Brønsted acidic ionic liquid on silica gel as heterogeneous catalyst for esterification. Catal Commun 12:353–356

    Article  CAS  Google Scholar 

  135. Chang JC, Ho WY, Sun IW, Tung YL, Liang SS (2010) Synthesis and characterization of dicationic ionic liquids that contain both hydrophilic and hydrophobic anions. Tetrahedron 66:6150–6155

    Article  CAS  Google Scholar 

  136. Benaglia M, Puglisi A, Cozzi F (2003) Polymer-supported organic catalysts. Chem Rev 103:3401–3429

    Article  CAS  PubMed  Google Scholar 

  137. Zhang Y, Wei S, Liu F, Du Y, Liu S, Ji Y, Yokoi T, Tatsumi T, Xiao FS (2009) Superhydrophobic nanoporous polymers as efficient adsorbents for organic compounds. NanoToday 4:135–142

    Article  CAS  Google Scholar 

  138. Kann N (2010) Recent applications of polymer supported organometallic catalysts in organic synthesis. Molecules 15:6306–6331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sun Q, Dai Z, Meng X, Xiao FS (2015) Porous polymer catalysts with hierarchical structures. Chem Soc Rev 44:6018–6034

    Article  CAS  PubMed  Google Scholar 

  140. Sun Q, Dai Z, Meng X, Xiao FS (2015) Task-Specific Design of Porous Polymer Heterogeneous Catalysts beyond Homogeneous Counterparts. ACS Catal 5:4556–4567

    Article  CAS  Google Scholar 

  141. Gomes R, Bhanja P, Bhaumik A (2016) Sulfonated porous organic polymer as a highly efficient catalyst for the synthesis of biodiesel at room temperature. J Mol Catal A-Chem 411:110–116

    Article  CAS  Google Scholar 

  142. Liu F, Meng X, Zhang Y, Ren L, Nawaz F, Xiao FS (2010) Efficient and stable solid acid catalysts synthesized from sulfonation of swelling mesoporous polydivinylbenzenes. J Catal 271:52–58

    Article  CAS  Google Scholar 

  143. Liu F, Kong W, Qi C, Zhu L, Xiao FS (2012) Design and synthesis of mesoporous polymer-based solid acid catalysts with excellent hydrophobicity and extraordinary catalytic activity. ACS Catal 2:565–572

    Article  CAS  Google Scholar 

  144. Liu F, Wang L, Sun Q, Zhu L, Meng X, Xiao FS (2012) Transesterification catalyzed by ionic liquids on superhydrophobic mesoporous polymers: heterogeneous catalysts that are faster than homogeneous catalysts. J Am Chem Soc 134:16948–16950

    Article  CAS  PubMed  Google Scholar 

  145. Liu F, Zheng A, Noshadi I, Xiao FS (2013) Design and synthesis of hydrophobic and stable mesoporous polymeric solid acid with ultra-strong acid strength and excellent catalytic activities for biomass transformation. Appl Catal B-Environ 136–137:193–201

    Article  CAS  Google Scholar 

  146. He M, Xu J, Ma ZH, Yuan H, Ma J (2015) Facile synthesis of acid mesoporous fluoropolymer as water-tolerant catalyst for esterification. Micropor Mesopor Mater 211:30–37

    Article  CAS  Google Scholar 

  147. Leng Y, Zhao J, Jiang P, Lu D (2016) POSS-derived solid acid catalysts with excellent hydrophobicity for highly efficient transformations of glycerol. Catal Sci Technol 6:875–881

    Article  CAS  Google Scholar 

  148. Lu D, Zhao J, Leng Y, Jiang P, Zhang C (2016) Novel porous and hydrophobic POSS-ionic liquid polymeric hybrid as highly efficient solid acid catalyst for synthesis of oleate. Catal Commun 83:27–30

    Article  CAS  Google Scholar 

  149. Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957

    Article  CAS  PubMed  Google Scholar 

  150. Zhang X, Zhang L, Yang Q (2014) Designed synthesis of sulfonated polystyrene /mesoporous silica hollow nanospheres as efficient solid acid catalysts. J Mat Chem A 2:7546–7554

    Article  CAS  Google Scholar 

  151. Li X, Yang Y, Yang Q (2013) Organo-functionalized silica hollow nanospheres: synthesis and catalytic application. J Mat Chem A 1:1525–1535

    Article  CAS  Google Scholar 

  152. Wang P, Bai S, Zhao J, Su P, Yang Q, Li C (2012) Bifunctionalized hollow nanospheres for the one-pot synthesis of methyl isobutyl ketone from acetone. Chemsuschem 5:2390–2396

    Article  CAS  PubMed  Google Scholar 

  153. Dou J, Zeng H (2012) Targeted synthesis of silicomolybdic acid (keggin acid) inside mesoporous silica hollow spheres for Friedel-Crafts alkylation. J Am Chem Soc 134:16235–16246

    Article  CAS  PubMed  Google Scholar 

  154. Li X, Liu X, Ma Y, Li M, Zhao J, Xin H, Zhang L, Yang Y, Li C, Yang Q (2012) Engineering the formation of secondary building blocks within hollow interiors. Adv Mat 24:1424–1428

    Article  CAS  Google Scholar 

  155. Wang Y, Wang D, Tan M, Jiang B, Zheng J, Tsubaki N, Wu M (2015) Monodispersed hollow SO3H-functionalized carbon/silica as efficient solid acid catalyst for esterification of oleic acid. ACS Appl Mater Inter 7:26767–26775

    Article  CAS  Google Scholar 

  156. Zhang X, Su F, Song D, An S, Lu B, Guo Y (2015) Preparation of efficient and recoverable organosulfonic acid functionalized alkyl-bridged organosilica nanotubes for esterification and transesterification. Appl Catal B: Environ 163:50–62

    Article  CAS  Google Scholar 

  157. Lu B, An S, Song D, Su F, Yang X, Guo Y (2015) Design of organosulfonic acid functionalized organosilica hollow nanospheres for efficient conversion of furfural alcohol to ethyl levulinate. Green Chem 17:1767–1778

    Article  CAS  Google Scholar 

  158. Song D, An S, Lu B, Guo Y, Leng J (2015) Arylsulfonic acid functionalized hollow mesoporous carbon spheres for efficient conversion of levulinic acid or furfuryl alcohol to ethyl levulinate. Appl Catal B: Environ 179:445–457

    Article  CAS  Google Scholar 

  159.  Peng J, Yao Y, Zhang X, Li C, Yang Q (2014) Superhydrophobic mesoporous silica nanospheres achieved via a high level of organo-functionalization. Chem Commun 50:10830–10833

  160. Takagaki A, Tagusagawa C, Shigenobu H, Hara M (2010) Nanosheets as highly active solid acid catalysts for green chemical syntheses. Energ Environ Sci 3:82–93

    Article  CAS  Google Scholar 

  161. Díaz U, Corma A (2014) Layered zeolitic materials: an approach to designing versatile functional solids. Dalton T 43:10292–10316

    Article  CAS  Google Scholar 

  162. Ötvös SB, Pálinkó I, Fülöp F (2019) Catalytic use of layered materials for fine chemical syntheses. Catal Sci Technol 9:47–60

    Article  Google Scholar 

  163. Tagusagawa C, Takagaki A, Hayashi S, Domen K (2008) Efficient utilization of nanospace of layered transition metal oxide HNbMoO6 as a strong, water-tolerant solid acid catalyst. J Am Chem Soc 130:7230–7231

    Article  CAS  PubMed  Google Scholar 

  164. Takagaki A, Sasaki R, Tagusagawa C, Domen K (2009) Intercalation-induced esterification over a layered transition metal oxide. Top Catal 52:592–596

    Article  CAS  Google Scholar 

  165. Ji J, Zhang G, Chen H, Wang S, Zhang G, Zhang F, Fan X (2011) Sulfonated graphene as water-tolerant solid acid catalyst. Chem Sci 2:484–487

    Article  CAS  Google Scholar 

  166. Liu F, Sun J, Zhu L, Meng X, Qi C, Xiao FS (2012) Sulfated graphene as an efficient solid catalyst for acid-catalyzed liquid reactions. J Mat Chem 22:5495–5502

    Article  CAS  Google Scholar 

  167. Zhang X, Fan Q, Yang H (2018) Green synthesis of functionalized graphene and their use as solid acid catalysts. J Mat Res 33:3946–3952

    Article  CAS  Google Scholar 

  168. Zhou H, Xiao L, Liu X, Li S, Kobayashi H, Zheng X, Fan J (2012) Defect-less, layered organo-titanosilicate with superhydrophobicity and its catalytic activity in room-temperature olefin epoxidation. Chem Commun 48:6954–6956

    Article  CAS  Google Scholar 

  169. Liu F, Yi X, Chen W, Liu Z, Chen W, Qi CZ, Song YF, Zheng A (2019) Developing two-dimensional solid superacids with enhanced mass transport, extremely high acid strength and superior catalytic performance. Chem Sci 10:5875–5883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Key R&D Program of China (No. 2019YFC1906705) and the National Natural Science Foundation of China (No. 21676085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenmin Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Zhang, L. & Cheng, Z. Design of Water-Tolerant Solid Acids: A Trade-Off Between Hydrophobicity and Acid Strength and their Catalytic Performance in Esterification. Catal Surv Asia 25, 279–300 (2021). https://doi.org/10.1007/s10563-021-09334-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-021-09334-8

Keywords

Navigation