Skip to main content
Log in

The Effect of K Salts on SO2–SO3 Conversion and Denitration Behavior over V2O5–WO3/TiO2 Catalysts

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

A series of V2O5–WO3/TiO2 catalysts treated by KCl or K2SO4 were prepared using the equal volume impregnation method. The effects of adding these K salts on SO2–SO3 conversion and on denitration behavior over the catalyst were studied, using reactor trials and various characterization methods, including NH3-TPD, H2-TPR, ICP, BET, XRD, SEM, FT-IR and XPS. The results of catalytic activity evaluation tests show that adding K salts decreases the denitration efficiency, while SO2 enhances the activity of the KCl-poisoned catalyst to an extent. The presence of K salts also improves the SO3 formation rate, such that the SO3 formation rate for the K2SO4-poisoned catalyst is as high as 1.53% at 410 °C (compared with 0.60% for the fresh catalyst). The characterization data indicate that K salts aggregate on the catalyst surface, blocking the pores of the catalyst. The reduction ability of the catalyst is decreased slightly and new weakly acidic sites appear. In addition, the concentration of strongly acidic sites declines. SO2 can increase the surface acidity of the catalyst. K salts increase the number of V5+=O bonds and weakly acidic sites, but consume oxygen atoms along with V and W species. Importantly, the strength of the V5+=O bonds, the concentration of surface chemically adsorbed oxygen and the V4+/V5+ ratio all played vital roles in improving the conversion of SO2–SO3 and in enhancing the NO reduction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Aguilar-Romero M, Camposeco R, Castillo S, Marín J, Rodríguez-González V, García-Serrano LA, Mejía-Centeno I (2017) Fuel 198:123

    Article  CAS  Google Scholar 

  2. Zhang S, Zhong Q (2015) J Solid State Chem 221:49

    Article  CAS  Google Scholar 

  3. Kompio PGWA, Brückner A, Hipler F, Manoylova O, Auer G, Mestl G, Grünert W (2017) Appl Catal B 217:365

    Article  CAS  Google Scholar 

  4. Liu C, Shi J-W, Gao C, Niu C (2016) Appl Catal A 522:54

    Article  CAS  Google Scholar 

  5. Kong M, Liu Q, Zhou J, Jiang L, Tian Y, Yang J, Ren S, Li J (2018) Chem Eng J 348:637

    Article  CAS  Google Scholar 

  6. Cimino S, Totarella G, Tortorelli M, Lisi L (2017) Chem Eng J 330:92

    Article  CAS  Google Scholar 

  7. Castellino F, Jensen AD, Johnsson JE, Fehrmann R (2009) Appl Catal B 86:196

    Article  CAS  Google Scholar 

  8. Zheng Y, Jensen AD, Johnsson JE, Thøgersen JR (2008) Appl Catal B 83:186

    Article  CAS  Google Scholar 

  9. Chen L, Li J, Ge M (2011) Chem Eng J 170:531

    Article  CAS  Google Scholar 

  10. Lewandowska AE, Calatayud M, Lozano-Diz E, Minot C, Bañares MA (2008) Catal Today 139:209

    Article  CAS  Google Scholar 

  11. Liu YM, Shu H, Xu QS, Zhang YH, Yang LJ (2015) J Fuel Chem Tech 43:1018

    Article  CAS  Google Scholar 

  12. Chang H, Shi C, Li M, Zhang T, Wang C, Jiang L, Wang X (2018) Chin J Catal 39:710

    Article  CAS  Google Scholar 

  13. Ramis G, Yi L, Busca G (1996) Catal Today 28:373

    Article  CAS  Google Scholar 

  14. Due-Hansen J, Kustov AL, Christensen CH, Fehrmann R (2009) Catal Commun 10:803

    Article  CAS  Google Scholar 

  15. Kröcher O, Elsener M (2008) Appl Catal B 77:215

    Article  CAS  Google Scholar 

  16. Castellino F, Rasmussen SB, Jensen AD, Johnsson JE, Fehrmann R (2008) Appl Catal B 83:110

    Article  CAS  Google Scholar 

  17. Dunn JP, Stenger HG, Wachs IE (1999) Catal Today 53:543

    Article  CAS  Google Scholar 

  18. Dunn JP, Stenger HG, Wachs IE (1999) J Catal 181:233

    Article  CAS  Google Scholar 

  19. Zhang G, Han W, Zhao H, Zong L, Tang Z (2018) Appl Catal B 226:117

    Article  CAS  Google Scholar 

  20. Zong L, Zhang G, Zhao J, Dong F, Zhang J, Tang Z (2018) Chem Eng J 343:500

    Article  CAS  Google Scholar 

  21. Huang X, Zhang G, Lu G, Tang Z (2018) Catal Surv Asia 22:1

    Article  CAS  Google Scholar 

  22. Peng Y, Li J, Shi W, Xu J, Hao J (2012) Environ Sci Technol 46:12623

    Article  CAS  PubMed  Google Scholar 

  23. Yan Z, Shi X, Yu Y, He H (2018) J Environ Sci 73:155

    Article  Google Scholar 

  24. Kamata H, Yukimura A (2012) Fuel Process Tech 104:295

    Article  CAS  Google Scholar 

  25. Wu Z, Jin R, Wang H, Liu Y (2009) Catal Commun 10:935

    Article  CAS  Google Scholar 

  26. Yan DJ, Yu Y, Huang XM, Liu SJ, Liu YH (2016) J Fuel Chem Technol 44:232

    Article  CAS  Google Scholar 

  27. Zhang M, Huang B, Jiang H, Chen Y (2017) Chin J Chem Eng 25:1695

    Article  Google Scholar 

  28. Hou SS, Chen KM, Yang ZY, Lin TH (2015) Mater 08:4805

    Article  CAS  Google Scholar 

  29. Topsoe NY, Dumesic JA, Topsoe H (1995) J Catal 151:241

    Article  CAS  Google Scholar 

  30. Nicosia D, Elsener M, Kröcher O, Jansohn P (2007) Top Catal 42/43:333

    Article  CAS  Google Scholar 

  31. Homann T, Bredow T, Jug K (2002) Surf Sci 515:205

    Article  CAS  Google Scholar 

  32. Zhang L, Cui S, Guo H, Ma X, Luo X (2015) Appl Surf Sci 355:1116

    Article  CAS  Google Scholar 

  33. Reiche MA, Maciejewski M, Baiker A (2000) Catal Today 56:347

    Article  CAS  Google Scholar 

  34. Madia G, Elsener M, Koebel M, Raimondi F, Wokaun A (2002) Appl Catal B 39:181

    Article  CAS  Google Scholar 

  35. Hou Y, Huang Z, Guo S (2009) Catal Commun 10:1538

    Article  CAS  Google Scholar 

  36. Jing L, Xu Z, Sun X, Shang J, Cai W (2001) Appl Surf Sci 180:308

    Article  CAS  Google Scholar 

  37. Zhao K, Han W, Tang Z, Lu J, Hu X (2018) Catal Surv Asia 22:20

    Article  CAS  Google Scholar 

  38. Zong L, Dong F, Zhang G, Han W, Tang Z, Zhang J (2017) Catal Surv Asia 21:103

    Article  CAS  Google Scholar 

  39. Zhang X, Huang Z, Liu Z (2008) Catal Commun 9:842

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No.51206047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaozong Dou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, H., Dou, C., Ru, Y. et al. The Effect of K Salts on SO2–SO3 Conversion and Denitration Behavior over V2O5–WO3/TiO2 Catalysts. Catal Surv Asia 23, 41–51 (2019). https://doi.org/10.1007/s10563-019-09265-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-019-09265-5

Keywords

Navigation