Skip to main content
Log in

Highly Efficient Mesoporous V2O5/WO3–TiO2 Catalyst for Selective Catalytic Reduction of NOx: Effect of the Valence of V on the Catalytic Performance

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Mesoporous WO3–TiO2 support was synthesized by hydrothermal method, mesoporous V2O5/WO3–TiO2 catalyst was synthesized by impregnation method and used for selective catalytic reduction (SCR) of NOx with a excellent NOx conversion at a wider operating temperature ranging from 200 to 460 °C. In the range of 260–440 °C, NOx conversion reached to 98.6%, and nearly a complete conversion. Even with the existence of 300 ppm SO2, NOx conversion was only a little decline. The catalyst was characterized by a series of techniques, such as XRD, BET, XPS, TEM, Raman and H2-TPR. It was concluded that V2O5/WO3–TiO2 catalyst was ascribe to antase TiO2, and also the high crystallinity of anatase TiO2 could improve the SCR performance. More interested, V2O5/WO3–TiO2 catalyst exhibited the typical mesoporous structure according to the BET results. In addition, the TEM results indicated that the active components of V and W were well-dispersed on the surface of TiO2, while the enhancement of dispersion could improve the activity of catalysts. More importantly, the concentration ratio of V4+/(V5+ + V4+ + V3+) performed the key role in improving the activity of V2O5/WO3–TiO2 catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dumesic JA, Topsoe NY, Topsoe H, Chen Y, Slabiak T (1996) J Catal 163:409–417

    Article  CAS  Google Scholar 

  2. Jabłońska M, Palkovits R (2016) Catal Sci Technol 6:49–72

    Article  Google Scholar 

  3. Wu Z, Jin R, Liu Y, Wang H (2008) Catal Commun 9:2217–2220

    Article  CAS  Google Scholar 

  4. Klukowski D, Balle P, Geiger B, Wagloehner S, Kureti S, Kimmerle B, Baiker A, Grunwaldt JD (2009) Appl Catal B 93:185–193

    Article  CAS  Google Scholar 

  5. Kwak JH, Tran D, Burton SD, Szanyi J, Lee JH, Peden CHF (2012) J Catal 287:203–209

    Article  CAS  Google Scholar 

  6. Busca G, Lietti L, Ramis G, Berti F (1998) Appl Catal B 18:1–36

    Article  CAS  Google Scholar 

  7. Huang Z, Liu Z, Zhang X, Liu Q (2006) Appl Catal B 63:260–265

    Article  CAS  Google Scholar 

  8. Wang X, Shi A, Duan Y, Wang J, Shen M (2012) Catal Sci Technol, 2:1386–1395

    Article  CAS  Google Scholar 

  9. Qiu Y, Liu B, Du J, Tang Q, Liu Z, Liu R, Tao C (2016) Chem Eng J 294:264–272

    Article  CAS  Google Scholar 

  10. Shimizu K, Satsuma A (2006) Phys Chem Chem Phys 8:2677–2695

    Article  CAS  Google Scholar 

  11. Alemany L, Lietti L, Ferlazzo N, Forzatti P, Busca G, Giamello E, Bregani F (1995) J Catal, 155:117–130

    Article  CAS  Google Scholar 

  12. Lietti L, Forzatti P, Bregani F (1996) Ind Eng Chem Res 35:3884–3892

    Article  CAS  Google Scholar 

  13. Peng Y, Li J, Si W, Luo J, Dai Q, Luo X, Liu X, Hao J (2014) Environ Sci Technol 48:13895–13900

    Article  CAS  Google Scholar 

  14. Kleemann M, Elsener M, Koebel M, Wokaun A (2000) Ind Eng Chem Res 39:4120–4126

    Article  CAS  Google Scholar 

  15. Yan N, Chen W, Chen J, Qu Z, Guo Y, Yang S, Jia J (2011) Environ Sci Technol 45:5725–5730

    Article  CAS  Google Scholar 

  16. Kamata H, Ueno S, Naito T, Yukimura A (2008) Ind Eng Chem Res 47:8136–8141

    Article  CAS  Google Scholar 

  17. Peng Y, Li J, Shi W, Xu J, Hao J (2012) Environ Sci Technol 46:12623–12629

    Article  CAS  Google Scholar 

  18. Negreira AS, Wilcox J (2013) J Phys Chem C 117:24397–24406

    Article  Google Scholar 

  19. Zhao W, Zhong Q, Zhang T, Pan Y (2012) RSC Adv 2:7906–7914

    Article  CAS  Google Scholar 

  20. Liu F, Yu Y, He H (2014) Chem Commun 50:8445–8463

    Article  CAS  Google Scholar 

  21. Yang S, Wang C, Ma L, Peng Y, Qu Z, Yan N, Chen J, Chang H, Li J (2013) Catal Sci Technol, 3:161–168

    Article  CAS  Google Scholar 

  22. Qu R, Ye D, Zheng C, Gao X, Luo Z, Ni M, Cen K (2016) RSC Adv 6:102436–102443

    Article  CAS  Google Scholar 

  23. Nam I, Eldrldge JW, Klttrell JR (1986) Ind Eng Chem Prod Res Dev, 25:192–197

    Article  CAS  Google Scholar 

  24. Lietti L, Nova I, Forzatti P (2000) Top Catal 11:111–122

    Article  Google Scholar 

  25. Svachula J, Alemany L, Ferlazzo N, Forzatti P, Tronconi E, Bregani F (1993) Ind Eng Chem Res 32:826–834

    Article  CAS  Google Scholar 

  26. Amiridis MD, Solar JP (1996) Ind Eng Chem Res 35:978–981

    Article  CAS  Google Scholar 

  27. Saleh R, Wachs I, Chan S, Chersich C (1986) J Catal 98:102–114

    Article  CAS  Google Scholar 

  28. Djerad S, Tifouti L, Crocoll M, Weisweiler W (2004) J Mol Catal A 208:257–265

    Article  CAS  Google Scholar 

  29. Dong G, Bai Y, Zhang Y, Zhao Y (2015) New J Chem 39:3588–3596

    Article  CAS  Google Scholar 

  30. Zhi B, Ding H, Wang D, Cao Y, Zhang Y, Wang X, Liu Y, Huo Q (2014) J Mater Chem A 2:2374–2382

    Article  CAS  Google Scholar 

  31. Sa YJ, Kwon K, Cheon JY, Kleitz F, Joo SH (2013) J Mater Chem A 1:9992–10001

    Article  CAS  Google Scholar 

  32. Zhan S, Zhu D, Qiu M, Yua H, Li Y (2015) RSC Adv 5:29353–29361

    Article  CAS  Google Scholar 

  33. Kwon DW, Park KH, Hong SC (2013) Appl Catal A 451:227–235

    Article  CAS  Google Scholar 

  34. Yu W, Wu X, Si Z, Weng D (2013) Appl Surf Sci 283:209–214

    Article  CAS  Google Scholar 

  35. Liu X, Wu X, Xu T, Weng D, Si Z, Ran R (2016) Chin J Catal 37:1340–1346

    Article  CAS  Google Scholar 

  36. Wang C, Yang S, Chang H, Peng Y, Li J (2013) Chem Eng J 225:520–527

    Article  CAS  Google Scholar 

  37. Du X, Gao X, Fu Y, Gao F, Luo Z, Cen K (2012) J Colloid Interface Sci 368:406–412

    Article  CAS  Google Scholar 

  38. Ye D, Qu R, Song H, Zheng C, Gao X, Luo Z, Ni M, Cen K (2016) RSC Adv 6:55584–55592

    Article  CAS  Google Scholar 

  39. Dupin JC, Gonbeau D, Vinatier P, Levasseur A (2000) Phys Chem Chem Phys 2:1319–1324

    Article  CAS  Google Scholar 

  40. Haber J (2009) Catal Today 142:100–113

    Article  CAS  Google Scholar 

  41. Al-Kandari H, Al-Kharafi F, Al-Awadi N, El-Dusouqui OM, Katrib A, Katrib A (2006) J Electron Spectrosc 151:128–134

    Article  CAS  Google Scholar 

  42. Camposeco R, Castillo S, Mugica V, Mejía-Centeno I, Marín J (2014) Chem Eng J 242:313–320

    Article  CAS  Google Scholar 

  43. Ettireddy PR, Ettireddy N, Boningari T, Pardemann R, Smirniotis PG (2012) J Catal 292:53–63

    Article  CAS  Google Scholar 

  44. Liu Z, Liu Y, Chen B, Zhu T, Ma L (2016) Catal Sci Technol 6:6688–6696

    Article  CAS  Google Scholar 

  45. Yu S, Yun H, Lee DM, Yi J (2012) J Mater Chem 22:12629–12635

    Article  CAS  Google Scholar 

  46. Cheng K, Liu J, Zhao Z, Wei Y, Jiang G, Duan A (2015) RSC Adv 5:45172–45183

    Article  CAS  Google Scholar 

  47. Reiche MA, Burgi T, Baiker A, Scholz A, Schnyder B, Wokaun A (2000) Appl Catal A 198:155–169

    Article  CAS  Google Scholar 

  48. Vuurman MA, Wachs IE, Hirt AM (1991) J Phys Chem 95:9928–9937

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of Science and Technology Service Network Initiative (STS) of Chinese Academy of Science (KFJ-SW-STS-149), The National Basic Research Program of China (2013CB933200), The National Natural Science Foundation of China (21407154, 21507137), and West Light Foundation of The Chinese Academy of Sciences is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhicheng Tang or Jiyi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, L., Dong, F., Zhang, G. et al. Highly Efficient Mesoporous V2O5/WO3–TiO2 Catalyst for Selective Catalytic Reduction of NOx: Effect of the Valence of V on the Catalytic Performance. Catal Surv Asia 21, 103–113 (2017). https://doi.org/10.1007/s10563-017-9229-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-017-9229-y

Keywords

Navigation