Skip to main content
Log in

Selective Production of Light Olefins from Catalytic Cracking of n-Hexane over OSDA-Free Beta Zeolites

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

The catalytic cracking of n-hexane for producing light olefins on Beta zeolite synthesized under organic structure-directing agent free conditions (OFB) was carried out as a model reaction of naphtha cracking. The Al-rich H-form OFB (HOFB) catalyst exhibited a short catalytic life and a low selectivity to propylene even at the lower reaction temperature of 773 K, due to its high acid amount. Dealumination of HOFB by ammonium hexafluorosilicate (AHFS) treatment and followed by nitric acid treatment resulted in the increase in the catalytic life and propylene selectivity, regardless of the reaction temperatures ranging from 773 to 923 K. This could be attributed to the lower amount of the acid sites especially the Lewis acid sites, which suppressed the secondary reactions of propylene and butenes and the hydride transfer to form coke. For example, the HOFB-AHFS(0.5 M)-HNO3(6 h) catalyst showed a very high selectivity of ca. 41 C-% to propylene even at nearly 100 % n-hexane conversion, at the higher reaction temperature of 923 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Yoshimura Y, Kijima N, Hayakawa T, Murata K, Suzuki K, Mizukami F, Matano K, Konishi T, Oikawa T, Saito M, Shiojima T, Shiozawa K, Wakui K, Sawada G, Sato K, Matsuo S, Yamaoka N (2000) Catal Surv Jpn 4:157–167

    Article  CAS  Google Scholar 

  2. Williams BA, Miller JT, Snurr RQ, Kung HH (2000) Appl Catal A Gen 203:179–190

    Article  CAS  Google Scholar 

  3. Kotrel S, Rosynek MP, Lunsford JH (2000) J Catal 191:55–61

    Article  CAS  Google Scholar 

  4. Babitz SM, Williams BA, Miller JT, Snurr RQ, Haag WO, Kung HH (1999) Appl Catal A Gen 179:71–86

    Article  CAS  Google Scholar 

  5. Corma A, GonzBlez-Alfaro V, Orchillks AV (1995) Appl Catal A Gen 129:203–215

    Article  CAS  Google Scholar 

  6. Inagaki S, Takechi K, Kubota Y (2010) Chem Commun 46:2662–2664

    Article  CAS  Google Scholar 

  7. Krannila H, Haag WO, Gates BC (1992) J Catal 135:115–124

    Article  CAS  Google Scholar 

  8. Komatsu T, Ishihara H, Fukui Y, Yashima T (2001) Appl Catal A Gen 214:103–109

    Article  CAS  Google Scholar 

  9. Kubo K, Iida H, Namber S, Igarashi A (2012) Microporous Mesoporous Mater 149:126–133

    Article  CAS  Google Scholar 

  10. Mochizuki H, Yokoi T, Imai H, Watanabe R, Namba S, Kondo JN, Tatsumi T (2011) Microporous Mesoporous Mater 145:165–171

    Article  CAS  Google Scholar 

  11. Mochizuki H, Yokoi T, Imai H, Namba S, Kondo JN, Tatsumi T (2012) Appl Catal A Gen 449:188–197

    Article  CAS  Google Scholar 

  12. Wang Y, Yokoi T, Namba S, Kondo JN, Tatsumi T (2014) Appl Catal A Gen 504:192–202

    Article  Google Scholar 

  13. Wang Y, Yokoi T, Namba S, Kondo JN, Tatsumi T (2016) J Catal 333:17–28

    Article  CAS  Google Scholar 

  14. Baerlocher C, McCusker LB, Olson DH (2007) Atlas of Zeolite Framework Types. Elsevier, Amsterdam, pp 72–75

    Book  Google Scholar 

  15. Bellussi G, Pazzuconi G, Perego C, Girotti G, Terzoni G (1995) J Catal 157:227–234

    Article  CAS  Google Scholar 

  16. Wichterlova B, Cejka J, Zilkova N (1996) Microporous Mater 6:405–414

    Article  CAS  Google Scholar 

  17. Corma A, Gonzalez-Alfaro V, Orchilles AV (1999) Appl Catal A Gen 187:245–254

    Article  CAS  Google Scholar 

  18. Xie B, Song JW, Ren LM, Ji YY, Li JX, Xiao F-S (2008) Chem Mater 20:4533–4535

    Article  CAS  Google Scholar 

  19. Majano G, Delmonte L, Valtchev V, Mintova S (2009) Chem Mater 21:4184–4191

    Article  CAS  Google Scholar 

  20. Kamimura Y, Chaikittisip W, Itabashi K, Shimojima A, Okubo T (2010) Chem Asian J 5:2182–2191

    Article  CAS  Google Scholar 

  21. Kamimura Y, Tanahashi S, Itabashi K, Sugawara A, Wakihara T, Shimojima A, Okubo T (2011) J Phys Chem C 115:744–750

    Article  CAS  Google Scholar 

  22. Xie B, Zhang HY, Yang CG, Liu SY, Ren LM, Zhang L, Meng XJ, Yilmaz B, Muller U, Xiao FS (2011) Chem Commun 47:3945–3947

    Article  CAS  Google Scholar 

  23. Muler M, Harvey G, Prince R (2000) Microporous Mesoporous Mater 34:135–147

    Article  Google Scholar 

  24. Maache M, Janin A, Lavalley JC, Joly JF, Benazzi E (1993) Zeolites 13:419–426

    Article  CAS  Google Scholar 

  25. Parikh PA, Subrahmanyam N, Bhat YS, Halgeri AB (1994) J Mol Catal 88:85–92

    Article  CAS  Google Scholar 

  26. Apellian MR, Fung AS, Kennedy GJ, Degnan TF (1996) J Phys Chem 100:16577–16583

    Article  Google Scholar 

  27. Xie ZK, Chen QL, Zhang CF, Bao JQ, Cao YH (2000) J Phys Chem B 104:2853–2859

    Article  CAS  Google Scholar 

  28. Van Bokhoven JA, Koningsberger DC, Kunkeler P, Van Bekkum H, Kentgens APM (2000) J Am Chem Soc 122:12842–12847

    Article  Google Scholar 

  29. Marques JP, Gener I, Ayrault P, Bordado JC, Lopes JM, Ribeiro FR, Guisnet M (2003) Microporous Mesoprous Mater 60:251–262

    Article  CAS  Google Scholar 

  30. Baran R, Millot Y, Onfroy T, Krafft JM, Dzwigaj S (2012) Microporous Mesoporous Mater 163:122–130

    Article  CAS  Google Scholar 

  31. Kubota Y, Itabashi K, Inagaki S, Nishita Y, Komatsu R, Tsuboi Y, Shinoda S, Okubo T (2014) Chem Mater 26:1250–1259

    Article  CAS  Google Scholar 

  32. Wang Y, Otomo R, Tatsumi T, Yokoi T (2016) Microporous Mesoporous Mater 220:275–281

    Article  CAS  Google Scholar 

  33. Otomo R, Müller U, Feyen M, Yilmaz B, Meng XJ, Xiao F-S, Gies H, Bao XH, Zhang WP, De Vos D, Yokoi T (2015) Catal Sci Technol. doi:10.1039/c5cy00944h

    Google Scholar 

  34. Wang QL, Torrealba M, Giannetto G, Guisnet M, Perot G, Cahoreau M, Caisso J (1990) Zeolites 10:703–706

    Article  CAS  Google Scholar 

  35. Wang QL, Giannetto G, Guisnet M (1990) Zeolite 10:301–303

    Article  Google Scholar 

  36. Garralon G, Fornes V, Corma A (1988) Zeolites 8:268–272

    Article  CAS  Google Scholar 

  37. Pérez-Pariente J, Sanz J, Fornés V, Corma A (1990) J Catal 124:217–223

    Article  Google Scholar 

  38. Hajjar R, Millot Y, Man PP, Che M, Dzwigaj S (2008) J Phys Chem C 112:20167–20175

    Article  CAS  Google Scholar 

  39. Maier SM, Jentys A, Lercher JA (2011) J Phys Chem C 115:8005–8013

    Article  CAS  Google Scholar 

  40. Niwa M, Sawa M, Katada N, Murakami Y (1995) J Phys Chem 99:8812–8816

    Article  CAS  Google Scholar 

  41. Kiricsi I, Flego C, Pazzuconi G, Parker WOJ, Millini R, Perego C, Bellussi G (1994) J Phys Chem 98:4627–4634

    Article  CAS  Google Scholar 

  42. Wu P, Komatsu T, Yashima T (1995) J Phys Chem 99:10923–10931

    Article  CAS  Google Scholar 

  43. Corma A, Orchillés AV (2000) Microporous Mesoporous Mater 35:21–30

    Article  Google Scholar 

  44. Jiang GY, Zhang L, Zhao Z, Zhou XY, Duan AJ, Xu CM, Gao JS (2008) Appl Catal A Gen 340:176–182

    Article  CAS  Google Scholar 

  45. Haag WO, Dessau RM, Lago RM (1991) Stud Surf Sci Catal 60:255–265

    Article  CAS  Google Scholar 

  46. Čejka J, Wichterlová B (2002) Catal Rev Sci Eng 44:375–421

    Article  Google Scholar 

  47. Wang B, Manos G (2008) Ind Eng Chem Res 47:2948–2955

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the green sustainable chemistry project of New Energy and Industrial Technology Development Organization (NEDO). This work was also partly performed under the framework of the INCOE (International Network of Centers of Excellence) project coordinated by BASF SE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Yokoi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Otomo, R., Tatsumi, T. et al. Selective Production of Light Olefins from Catalytic Cracking of n-Hexane over OSDA-Free Beta Zeolites. Catal Surv Asia 20, 1–12 (2016). https://doi.org/10.1007/s10563-015-9202-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-015-9202-6

Keywords

Navigation