Skip to main content
Log in

Investigation of Pyrolysis Characteristics and Product Evolution Behavior of Methyl Oleate under the Effect of Copper Slag

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract  

Biodiesel is a highly potential energy source with the characteristics of renewability and environmental friendliness. In this study, methyl oleate (MO, unsaturated fatty acid) was selected as a model compound for biodiesel. The thermal conversion behavior of MO and the reaction characteristics of copper slag (CS) catalytic pyrolysis of MO were investigated. The thermal conversion behavior of MO was explored by Py-GC/MS and TG-FTIR. The results showed that the pyrolysis products of MO mainly consisted of oxygenated compounds, alkenes, alkanes, and aromatics. Furthermore, the final product of the catalytic pyrolysis of MO by CS was analyzed. More gas products were produced under the effect of CS. The components of the gas products were determined by gas chromatography (GC). The results revealed that CS promoted the production of H2 and CO. The coke was analyzed and characterized by FTIR, Raman and SEM. The addition of CS enhanced the decomposition of oxygen-containing structures, leading to the change of particle size and chemical structure of coke. The research contributes to understanding the thermal conversion behavior of unsaturated fatty acids and the reaction characteristics under the effect of CS. This provides valuable information for the application of biodiesel to replace fossil energy in the copper smelting process.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Faizan M, Song H (2023) Critical review on catalytic biomass gasification: state-of-art progress, technical challenges, and perspectives in future development. J Clean Prod 408:137224. https://doi.org/10.1016/j.jclepro.2023.137224

    Article  CAS  Google Scholar 

  2. Li S, Wu Y, Dao MU, Dragoi E, Xia C (2023) Spotlighting of the role of catalysis for biomass conversion to green fuels towards a sustainable environment: latest innovation avenues, insights, challenges, and future perspectives. Chemosphere 318:137954. https://doi.org/10.1016/j.chemosphere.2023.137954

    Article  CAS  PubMed  Google Scholar 

  3. Ghosh N, Rhithuparna D, Rokhum SL, Halder G (2023) Ethical issues pertaining to sustainable biodiesel synthesis over trans/esterification process. Sustain Chem Pharm 33:101123. https://doi.org/10.1016/j.scp.2023.101123

    Article  CAS  Google Scholar 

  4. Kumar A, Singh VP, Srivastava A (2022) Quality biodiesel via biotransesterification from inedible renewable sources. J Clean Prod 379:134653. https://doi.org/10.1016/j.jclepro.2022.134653

    Article  CAS  Google Scholar 

  5. Jin X, Li S, Ye H et al (2023) Investigation and optimization of biodiesel production based on multiple machine learning technologies. Fuel 348:128546. https://doi.org/10.1016/j.fuel.2023.128546

    Article  CAS  Google Scholar 

  6. Ambat I, Srivastava V, Sillanpää M (2018) Recent advancement in biodiesel production methodologies using various feedstock: a review. Renew Sust Energ Rev 90:356–369. https://doi.org/10.1016/j.rser.2018.03.069

    Article  CAS  Google Scholar 

  7. Singh D, Sharma D, Soni SL et al (2021) A comprehensive review of physicochemical properties, production process, performance and emissions characteristics of 2nd generation biodiesel feedstock: jatropha curcas. Fuel 285:119110. https://doi.org/10.1016/j.fuel.2020.119110

    Article  CAS  Google Scholar 

  8. Suresh M, Jawahar CP, Richard A (2018) A review on biodiesel production, combustion, performance, and emission characteristics of non-edible oils in variable compression ratio diesel engine using biodiesel and its blends. Renew Sust Energ Rev 92:38–49. https://doi.org/10.1016/j.rser.2018.04.048

    Article  CAS  Google Scholar 

  9. Maheshwari P, Haider MB, Yusuf M et al (2022) A review on latest trends in cleaner biodiesel production: role of feedstock, production methods, and catalysts. J Clean Prod 355:131588. https://doi.org/10.1016/j.jclepro.2022.131588

    Article  CAS  Google Scholar 

  10. Bayat A, Sadrameli SM, Towfighi J (2016) Production of green aromatics via catalytic cracking of canola oil methyl ester (CEM) using HZSM-5 catalyst with different Si/Al ratios. Fuel 180:244–255. https://doi.org/10.1016/j.fuel.2016.03.086

    Article  CAS  Google Scholar 

  11. Yu C, Yu S, Li L (2022) Upgraded methyl oleate to diesel-like hydrocarbons through selective hydrodeoxygenation over Mo-based catalyst. Fuel 308:122038. https://doi.org/10.1016/j.fuel.2021.122038

    Article  CAS  Google Scholar 

  12. Wang M, Feng C (2021) Towards a decoupling between economic expansion and carbon dioxide emissions in resources sector: a case study of China’s 29 non-ferrous metal industries. Resour Policy 74:102249. https://doi.org/10.1016/j.resourpol.2021.102249

    Article  Google Scholar 

  13. Wang J, Liu W, Chen L, Li X, Wen Z (2023) Analysis of china’s non-ferrous metals industry’s path to peak carbon: a whole life cycle industry chain based on copper. Sci Total Environ 892:164454. https://doi.org/10.1016/j.scitotenv.2023.164454

    Article  CAS  PubMed  Google Scholar 

  14. Zhou S, Wei Y, Li B, Wang H (2019) Cleaner recycling of iron from waste copper slag by using walnut shell char as green reductant. J Clean Prod 217:423–431. https://doi.org/10.1016/j.jclepro.2019.01.184

    Article  CAS  Google Scholar 

  15. Zuo Z, Yu Q, Wei M et al (2016) Thermogravimetric study of the reduction of copper slag by biomass. J Therm Anal Calorim 126(2):481–491. https://doi.org/10.1007/s10973-016-5570-z

    Article  CAS  Google Scholar 

  16. Kuang B, Zhang F, Yu Y et al (2023) Co-treatment of spent carbon anode and copper slag for reuse and the solidification of the constituent fluorine and heavy metals. J Clean Prod 383:135418. https://doi.org/10.1016/j.jclepro.2022.135418

    Article  CAS  Google Scholar 

  17. Du J, Zhang F, Hu J, Yang S, Liu H, Wang H (2022) Pyrolysis of rubber seed oil over high-temperature copper slag: gas and mechanism of coke formation. Renew Energy 185:1209–1220. https://doi.org/10.1016/j.renene.2021.12.141

    Article  CAS  Google Scholar 

  18. Dong N, Huo R, Liu M et al (2021) Chemical looping gasification of sewage sludge using copper slag modified by Nio as an oxygen carrier. Chin J Chem Eng 29:335–343. https://doi.org/10.1016/j.cjche.2020.09.007

    Article  CAS  Google Scholar 

  19. Pio DT, Tarelho LAC, Pinto RG et al (2018) Low-cost catalysts for in-situ improvement of producer gas quality during direct gasification of biomass. Energy 165:442–454. https://doi.org/10.1016/j.energy.2018.09.119

    Article  CAS  Google Scholar 

  20. Zhu Y, Zhou S, Wei Y, Li B, Wang H (2023) Insight into the function of waste cooking oil in the magnetite reduction process. Renew Energy 210:188–195. https://doi.org/10.1016/j.renene.2023.04.068

    Article  CAS  Google Scholar 

  21. Xu Z, Liu P, Xu G, Liu Q, He Z, Wang Q (2017) Bio-fuel oil characteristic from catalytic cracking of hydrogenated palm oil. Energy 133:666–675. https://doi.org/10.1016/j.energy.2017.05.155

    Article  CAS  Google Scholar 

  22. Wang X, Wang H, Jin X, Wang F, Shen B (2022) Synthetic strategies and performance of catalysts for pyrolytic production of alternative aviation fuels using non-edible lipids: a critical review. Appl Catal A-Gen 643:118769. https://doi.org/10.1016/j.apcata.2022.118769

    Article  CAS  Google Scholar 

  23. Shen T, Zhang F, Yang S et al (2023) Comprehensive study on the pyrolysis process of chestnut processing waste (chestnut shells): kinetic triplet, thermodynamic, in-situ monitoring of evolved gasses and analysis biochar. Fuel 331:125944. https://doi.org/10.1016/j.fuel.2022.125944

    Article  CAS  Google Scholar 

  24. Li H, Niu S, Lu C, Cheng S (2015) Comparative evaluation of thermal degradation for biodiesels derived from various feedstocks through transesterification. Energy Convers Manag 98:81–88. https://doi.org/10.1016/j.enconman.2015.03.097

    Article  CAS  Google Scholar 

  25. Abdul Jameel AG, Han Y, Brignoli O et al (2017) Heavy fuel oil pyrolysis and combustion: kinetics and evolved gases investigated by TGA-FTIR. J Anal Appl Pyrolysis 127:183–195. https://doi.org/10.1016/j.jaap.2017.08.008

    Article  CAS  Google Scholar 

  26. Xu Z, Cheng J, Song H et al (2020) Production of bio-fuel from plant oil asphalt via pyrolysis. J Energy Inst 93(5):1763–1772. https://doi.org/10.1016/j.joei.2020.03.007

    Article  CAS  Google Scholar 

  27. Beims RF, Botton V, Ender L et al (2018) Effect of degree of triglyceride unsaturation on aromatics content in bio-oil. Fuel 217:175–184. https://doi.org/10.1016/j.fuel.2017.12.109

    Article  CAS  Google Scholar 

  28. Tawalbeh M, Al-Othman A, Salamah T, Alkasrawi M, Martis R, El-Rub ZA (2021) A critical review on metal-based catalysts used in the pyrolysis of lignocellulosic biomass materials. J Environ Manage 299:113597. https://doi.org/10.1016/j.jenvman.2021.113597

    Article  CAS  PubMed  Google Scholar 

  29. Zabeti M, Wan Daud WMA, Aroua MK (2009) Activity of solid catalysts for biodiesel production: a review. Fuel Process Technol 90(6):770–777. https://doi.org/10.1016/j.fuproc.2009.03.010

    Article  CAS  Google Scholar 

  30. Ochoa A, Bilbao J, Gayubo AG, Castaño P (2020) Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: a review. Renew Sust Energ Rev 119:109600. https://doi.org/10.1016/j.rser.2019.109600

    Article  CAS  Google Scholar 

  31. Chen X, Che Q, Li S et al (2019) Recent developments in lignocellulosic biomass catalytic fast pyrolysis: strategies for the optimization of bio-oil quality and yield. Fuel Process Technol 196:106180. https://doi.org/10.1016/j.fuproc.2019.106180

    Article  CAS  Google Scholar 

  32. Qiu B, Yang C, Shao Q, Liu Y, Chu H (2022) Recent advances on industrial solid waste catalysts for improving the quality of bio-oil from biomass catalytic cracking: a review. Fuel 315:123218. https://doi.org/10.1016/j.fuel.2022.123218

    Article  CAS  Google Scholar 

  33. Chen F, Zhang F, Yang S, Liu H, Wang H, Hu J (2021) Investigation of pyrolysis kinetics, thermodynamics, product characteristics and reaction mechanism of rubber seed oil. Energy Convers Manag 244:114535. https://doi.org/10.1016/j.enconman.2021.114535

    Article  CAS  Google Scholar 

  34. Zhang C, Hu X, Guo H et al (2018) Pyrolysis of poplar, cellulose and lignin: effects of acidity and alkalinity of the metal oxide catalysts. J Anal Appl Pyrolysis 134:590–605. https://doi.org/10.1016/j.jaap.2018.08.009

    Article  CAS  Google Scholar 

  35. Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sust Energ Rev 57:1126–1140. https://doi.org/10.1016/j.rser.2015.12.185

    Article  CAS  Google Scholar 

  36. Hatefirad P, Hosseini M, Tavasoli A (2022) Effect of fe/cu catalysts supported on zeolite/active carbon hybrid on bio-oil quality derived from catalytic pyrolysis of granular bacteria biomass. Fuel 312:122870. https://doi.org/10.1016/j.fuel.2021.122870

    Article  CAS  Google Scholar 

  37. Zhang X, Sun L, Chen L et al (2014) Comparison of catalytic upgrading of biomass fast pyrolysis vapors over CaO and Fe(III)/CaO catalysts. J Anal Appl Pyrolysis 108:35–40. https://doi.org/10.1016/j.jaap.2014.05.020

    Article  CAS  Google Scholar 

  38. Das SK, Ghosh GK, Avasthe RK, Sinha K (2021) Compositional heterogeneity of different biochar: effect of pyrolysis temperature and feedstocks. J Environ Manage 278:111501. https://doi.org/10.1016/j.jenvman.2020.111501

    Article  CAS  PubMed  Google Scholar 

  39. Omoriyekomwan JE, Tahmasebi A, Zhang J, Yu J (2017) Formation of hollow carbon nanofibers on bio-char during microwave pyrolysis of palm kernel shell. Energy Convers Manag 148:583–592. https://doi.org/10.1016/j.enconman.2017.06.022

    Article  CAS  Google Scholar 

  40. Shao Y, Guizani C, Grosseau P, Chaussy D, Beneventi D (2018) Biocarbons from microfibrillated cellulose/lignosulfonate precursors: a study of electrical conductivity development during slow pyrolysis. Carbon 129:357–366. https://doi.org/10.1016/j.carbon.2017.12.037

    Article  CAS  Google Scholar 

  41. Zhao Y, Feng D, Zhang Y, Huang Y, Sun S (2016) Effect of pyrolysis temperature on char structure and chemical speciation of alkali and alkaline earth metallic species in biochar. Fuel Process Technol 141:54–60. https://doi.org/10.1016/j.fuproc.2015.06.029

    Article  CAS  Google Scholar 

  42. Du J, Zhang F, Hu J, Yang S, Liu H, Wang H (2023) Co-pyrolysis of industrial hemp stems and waste plastics into biochar-based briquette: product characteristics and reaction mechanisms. Fuel Process Technol 247:107793. https://doi.org/10.1016/j.fuproc.2023.107793

    Article  CAS  Google Scholar 

  43. Zhang L, Li T, Quyn D, Dong L, Qiu P, Li C (2015) Formation of nascent char structure during the fast pyrolysis of mallee wood and low-rank coals. Fuel 150:486–492. https://doi.org/10.1016/j.fuel.2015.02.066

    Article  CAS  Google Scholar 

  44. Das SK, Ghosh GK, Avasthe R, Sinha K (2021) Morpho-mineralogical exploration of crop, weed and tree derived biochar. J Hazard Mater 407:124370. https://doi.org/10.1016/j.jhazmat.2020.124370

    Article  CAS  PubMed  Google Scholar 

  45. Seifi H, Sadrameli SM (2016) Bound cleavage at carboxyl group-glycerol backbone position in thermal cracking of the triglycerides in sunflower oil. J Anal Appl Pyrolysis 121:1–10. https://doi.org/10.1016/j.jaap.2016.06.006

    Article  CAS  Google Scholar 

  46. Cheah YW, Salam MA, Sebastian J et al (2023) Upgrading of triglycerides, pyrolysis oil, and lignin over metal sulfide catalysts: a review on the reaction mechanism, kinetics, and catalyst deactivation. J Environ Chem Eng 11(3):109614. https://doi.org/10.1016/j.jece.2023.109614

    Article  CAS  Google Scholar 

  47. Zhai Y, Feng B, Yuan W, Ao C, Zhang L (2018) Experimental and modeling studies of small typical methyl esters pyrolysis: methyl butanoate and methyl crotonate. Combust Flame 191:160–174. https://doi.org/10.1016/j.combustflame.2017.12.033

    Article  CAS  Google Scholar 

  48. Xu J, Long F, Jiang J et al (2019) Integrated catalytic conversion of waste triglycerides to liquid hydrocarbons for aviation biofuels. J Clean Prod 222:784–792. https://doi.org/10.1016/j.jclepro.2019.03.094

    Article  CAS  Google Scholar 

  49. Jiraroj D, Jirarattanapochai O, Anutrasakda W, Samec JSM, Tungasmita DN (2021) Selective decarboxylation of biobased fatty acids using a ni-fsm-16 catalyst. Appl Catal B 291:120050. https://doi.org/10.1016/j.apcatb.2021.120050

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Yunnan Fundamental Research Projects (Grant No. 202302AO370018) and the National Natural Science Foundation of China (Grant No. U2102213, No. 51966007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhang Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 733 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, F., Hu, J. et al. Investigation of Pyrolysis Characteristics and Product Evolution Behavior of Methyl Oleate under the Effect of Copper Slag. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04668-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04668-0

Keywords

Navigation