Skip to main content
Log in

Porous Carbon-Supported Cobalt Catalyst for CO Hydrogenation to Gasoline Range Hydrocarbons

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Direct conversion of carbon monoxide into fuel through Fischer–Tropsch synthesis (FTS) is economically and environmentally beneficial as an alternative clean energy source. However, the activity and product selectivity need further investigation. In this work, a Co-MOF-71 (Co(1,4-BDC) (DMF)) was prepared solvothermally and pyrolyzed under nitrogen flow at low pyrolysis temperature to obtain a highly mesoporous Co@C-500 catalyst. The obtained catalyst exhibits high cobalt loading (53 wt%), high reducibility, optimum nanoparticle size (10.49 nm), and well-dispersed active sites. The catalytic activity of the catalyst was tested under different reaction conditions using a stainless steel fixed-bed reactor. The optimal performance showed a high CO conversion (82.7%), high C5+ selectivity (82.77%) with C5–C12 gasoline range hydrocarbons (71.9%), low C2–C4 selectivity (13%), and low methane selectivity (3.7%). Furthermore, the catalyst has a high C5+ yield of 68%, with the gasoline fraction (C5–C12) being the main product (59.1% yield). The catalyst shows superior FTS performance compared with other reported Co-containing catalysts, especially after being tested for more than 120 h without deactivation. Therefore, this work could contribute to the design of high-efficiency MOF-derived Co-FTS catalysts that could be used in the production of green and sustainable transportation fuel (gasoline).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Joensen F, Nielsen PEH, Palis Sørensen MD (2011) Biomass to green gasoline and power. Biomass Convers Biorefinery 1:85–90

    Article  CAS  Google Scholar 

  2. Zhu C, Bollas GM (2018) Gasoline selective Fischer-Tropsch synthesis in structured bifunctional catalysts. Appl Catal B Environ 235:92–102

    Article  Google Scholar 

  3. Dixon RK, McGowan E, Onysko G et al (2010) US energy conservation and efficiency policies: challenges and opportunities. Energy Policy 38:6398–6408

    Article  Google Scholar 

  4. Ahmed HE, Rashed AE, El-khouly ME et al (2023) Green approach for sustainable production of paraffin fuel from CO2 hydrogenation on Fe-MOF catalyst. J Environ Chem Eng 11:111071

    Article  CAS  Google Scholar 

  5. Li Y, Zeng L, Pang G et al (2022) Direct conversion of carbon dioxide into liquid fuels and chemicals by coupling green hydrogen at high temperature. Appl Catal B Environ 324:122299

    Article  Google Scholar 

  6. Iglesia E (1997) Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Appl Catal A Gen 161:59–78

    Article  CAS  Google Scholar 

  7. Li X, Chen Y, Liu S et al (2021) Enhanced gasoline selectivity through Fischer-Tropsch synthesis on a bifunctional catalyst: effects of active sites proximity and reaction temperature. Chem Eng J 416:129180

    Article  CAS  Google Scholar 

  8. Otun KO, Liu X, Hildebrandt D (2020) Metal-organic framework (MOF)-derived catalysts for Fischer-Tropsch synthesis: recent progress and future perspectives. J Energy Chem 51:230–245

    Article  Google Scholar 

  9. Hassan S, Suzuki M, Abd E-M (2012) Capacitive behavior of manganese dioxide/stainless steel electrodes at different deposition currents. Am J Mater Sci 2:11–14

    Article  Google Scholar 

  10. El-Khatib KM, Abou Helal MO, Abd El-Moneim A et al (2004) Corrosion stability of SUS316L HVOF sprayed coatings as lightweight bipolar plate materials in PEM fuel cells. Anti-Corrosion Methods Mater 51:136–142

    Article  CAS  Google Scholar 

  11. Van de Loosdrecht J, Botes FG, Ciobica IM et al (2013) Fischer-Tropsch synthesis: catalysts and chemistry. Comprehensive inorganic chemistry II. Elsevier, Amsterdam

    Google Scholar 

  12. Chen Y, Li X, Dai L et al (2020) Controllable synthesis of core-shell Co@C@SiO2 catalysts for enhancing product selectivity in Fischer-Tropsch synthesis by tuning the mass transfer resistance. J Energy Chem 51:199–206

    Article  Google Scholar 

  13. Ghogia AC, Nzihou A, Serp P et al (2021) Cobalt catalysts on carbon-based materials for Fischer-Tropsch synthesis: a review. Appl Catal A Gen 609:117906

    Article  CAS  Google Scholar 

  14. Mahmoudi H, Mahmoudi M, Doustdar O et al (2017) A review of Fischer Tropsch synthesis process, mechanism, surface chemistry and catalyst formulation. Biofuels Eng 2:11–31

    Article  Google Scholar 

  15. Qiu B, Yang C, Guo W et al (2017) Highly dispersed Co-based Fischer-Tropsch synthesis catalysts from metal-organic frameworks. J Mater Chem A 5:8081–8086

    Article  CAS  Google Scholar 

  16. Gnanamani MK, Jacobs G, Shafer WD et al (2013) Fischer-Tropsch synthesis: activity of metallic phases of cobalt supported on silica. Catal Today 215:13–17

    Article  CAS  Google Scholar 

  17. Isaeva VI, Eliseev OL, Kazantsev RV et al (2016) Fischer-Tropsch synthesis over MOF-supported cobalt catalysts (Co@MIL-53(Al)). Dalt Trans 45:12006–12014

    Article  CAS  Google Scholar 

  18. Shimura K, Miyazawa T, Hanaoka T et al (2015) Fischer-Tropsch synthesis over alumina supported cobalt catalyst: effect of promoter addition. Appl Catal A Gen 494:1–11

    Article  CAS  Google Scholar 

  19. Satthawong R, Koizumi N, Song C et al (2013) Bimetallic Fe-Co catalysts for CO2 hydrogenation to higher hydrocarbons. J. CO2 Util 3–4:102–106

    Article  Google Scholar 

  20. Yao Y, Liu X, Hildebrandt D et al (2012) The effect of CO2 on a cobalt-based catalyst for low temperature Fischer-Tropsch synthesis. Chem Eng J 193–194:318–327

    Article  Google Scholar 

  21. Li N, Ma CP, Zhang CH et al (2019) Low-cost preparation of carbon-supported cobalt catalysts from MOFs and their performance in CO hydrogenation. Journal Fuel Chem Technol 47:428–437

    Article  CAS  Google Scholar 

  22. Shah HUR, Ahmad K, Bashir MS et al (2022) Metal organic frameworks for efficient catalytic conversion of CO2 and CO into applied products. Mol Catal 517:112055

    Article  CAS  Google Scholar 

  23. Nasser AH, El-Naggar H, Abd E-M (2018) Utilizing FBR to produce olefins from CO reduction using Fe-Mn nanoparticles on reduced graphene oxide catalysts and comparing the performance with SBR. RSC Adv 8:42415–42423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gamil M, Tabata O, Nakamura K et al (2014) Investigation of a new high sensitive micro-electromechanical strain gauge sensor based on graphene piezoresistivity. Key Eng Mater 605:207–210

    Article  Google Scholar 

  25. Tarasov AL, Isaeva VI, Tkachenko OP et al (2018) Conversion of CO2 into liquid hydrocarbons in the presence of a Co-containing catalyst based on the microporous metal-organic framework MIL-53(Al). Fuel Process Technol 176:101–106

    Article  CAS  Google Scholar 

  26. Maina JW, Pozo-Gonzalo C, Kong L et al (2017) Metal organic framework based catalysts for CO2 conversion. Mater Horizons 4:345–361

    Article  CAS  Google Scholar 

  27. Ghanbari T, Abnisa F, Wan Daud WMA (2020) A review on production of metal organic frameworks (MOF) for CO2 adsorption. Sci Total Environ 707:135090

    Article  CAS  PubMed  Google Scholar 

  28. Rosi NL, Kim J, Eddaoudi M et al (2005) Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J Am Chem Soc 127:1504–1518

    Article  CAS  PubMed  Google Scholar 

  29. Chui SS, Lo SM, Charmant JP et al (1999) A chemically functionalizable nanoporous material. Science 283:1148–1150

    Article  CAS  PubMed  Google Scholar 

  30. Zhang X, Sun X, Xu D et al (2019) Synthesis of MOF-derived Co@C composites and application for efficient hydrolysis of sodium borohydride. Appl Surf Sci 469:764–769

    Article  CAS  Google Scholar 

  31. Wang A, Luo M, Lü B et al (2022) MOF-Derived Porous Carbon-Supported Bimetallic Fischer-Tropsch Synthesis Catalysts. Ind Eng Chem Res 61:3941–3951

    Article  CAS  Google Scholar 

  32. Ihsanti DH, Kurniawansyah F et al (2019) Performance of bimetallic Fe and Co catalyst supported on HZSM-5 for Fischer-Tropsch synthesis. IOP Conf Ser Mater Sci Eng. 546:42012

    Article  CAS  Google Scholar 

  33. Zhang J, An B, Hong Y et al (2017) Pyrolysis of metal-organic frameworks to hierarchical porous Cu/Zn-nanoparticle@carbon materials for efficient CO2 hydrogenation. Mater Chem Front 1:2405–2409

    Article  CAS  Google Scholar 

  34. Abd El-Moneim A, Akiyama E, Ismail KM et al (2011) Corrosion behaviour of sputter-deposited Mg-Zr alloys in a borate buffer solution. Corros Sci 53:2988–2993

    Article  Google Scholar 

  35. Pei Y, Li Z, Li Y (2017) Highly active and selective Co-based Fischer-Tropsch catalysts derived from metal–organic frameworks. AIChE J 63:2935–2944

    Article  CAS  Google Scholar 

  36. Miles DO, Jiang D, Burrows AD et al (2013) Conformal transformation of [Co(bdc)(DMF)] (Co-MOF-71, bdc = 1,4-benzenedicarboxylate, DMF = N, N-dimethylformamide) into porous electrochemically active cobalt hydroxide. Electrochem Commun 27:9–13

    Article  CAS  Google Scholar 

  37. Bigdeli H, Moradi M, Hajati S et al (2017) Cobalt terephthalate MOF-templated synthesis of porous nano-crystalline Co3O4 by the new indirect solid state thermolysis as cathode material of asymmetric supercapacitor. Phys E 94:158–166

    Article  CAS  Google Scholar 

  38. El-Deen AG, Hussein El-Shafei M, Hessein A et al (2020) High-performance asymmetric supercapacitor based hierarchical NiCo2O4@ carbon nanofibers//Activated multichannel carbon nanofibers. Nanotechnology 31:365404

    Article  CAS  PubMed  Google Scholar 

  39. Gebert A, Abd El-Moneim A, Gutfleisch O et al (2002) Corrosion behavior of textured and isotropic nanocrystalline NdFeB-based magnets. IEEE Trans Magn 38:2979–2981

    Article  CAS  Google Scholar 

  40. Nisa MU, Chen Y, Li X et al (2022) Modulating C5+selectivity for Fischer-Tropsch synthesis by tuning pyrolysis temperature of MOFs derived Fe-based catalyst. J Taiwan Inst Chem Eng 131:104170

    Article  CAS  Google Scholar 

  41. Wang Z, Wu C, Zhang Z et al (2021) Bimetallic Fe/Co-MOFs for tetracycline elimination. J Mater Sci 56:15684–15697

    Article  CAS  Google Scholar 

  42. Rashed AE, Nasser A, Elkady MF et al (2022) Fe nanoparticle size control of the Fe-MOF-derived catalyst using a solvothermal method: effect on FTS activity and olefin production. ACS Omega 7:8403–8419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lou X, Hu H, Li C et al (2016) Capacity control of ferric coordination polymers by zinc nitrate for lithium-ion batteries. RSC Adv 6:86126–86130

    Article  CAS  Google Scholar 

  44. Rashed AE, Essam K, El-Kady MF et al (2021) Highly active fischer-tropsch synthesis fe-bdc mof-derived catalyst prepared by modified solvothermal method. Key Eng Mater 891:56–61

    Article  Google Scholar 

  45. Shaker A, Hassanin AH, Shaalan NM et al (2019) Micropatterned flexible strain gauge sensor based on wet electrospun polyurethane/PEDOT: PSS nanofibers. Smart Mater Struct 28:75029

    Article  CAS  Google Scholar 

  46. Hamed A, Hessein A, Abd E-M (2021) Towards high performance flexible planar supercapacitors: in-situ laser scribing doping and reduction of graphene oxide films. Appl Surf Sci 551:149457

    Article  CAS  Google Scholar 

  47. Rashed AE, Abd E-M (2017) Two steps synthesis approach of MnO2/graphene nanoplates/graphite composite electrode for supercapacitor application. Mater Today Energy 3:24–31

    Article  Google Scholar 

  48. Gorimbo J, Muvhiiwa R, Llane E et al (2020) Cobalt catalyst reduction thermodynamics in fischer tropsch: an attainable region approach. Reactions 1:115–129

    Article  Google Scholar 

  49. Lü B, Qi W, Luo M et al (2020) Fischer-Tropsch synthesis: ZIF-8@ZIF-67-derived cobalt nanoparticle-embedded nanocage catalysts. Ind Eng Chem Res 59:12352–12359

    Article  Google Scholar 

  50. Pei Y, Ding Y, Zang J et al (2013) Temperature-programmed desorption and surface reaction studies of CO on Co2C. Chinese J Cat 34:1570–1575

    Article  CAS  Google Scholar 

  51. Ralston WT, Melaet G, Saephan T et al (2017) Evidence of structure sensitivity in the Fischer-Tropsch reaction on model cobalt nanoparticles by time-resolved chemical transient kinetics. Angew Chemie - Int Ed 56:7415–7419

    Article  CAS  Google Scholar 

  52. Park JC, Kwon JI, Kang SW et al (2017) Large-scale synthesis of uniformly loaded cobalt nanoparticles on alumina for efficient clean fuel production. RSC Adv 7:8852–8857

    Article  CAS  Google Scholar 

  53. Rashed AE, Elkady MF, Matsushita Y et al (2023) Syngas to FCC-like gasoline range hydrocarbons with upgraded light olefin selectivity catalyzed by readily synthesized Fe-MOF. Chem Eng J 473:145125

    Article  CAS  Google Scholar 

  54. Bezemer GL, Bitter JH, Kuipers HPCE et al (2006) Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128:3956–3964

    Article  CAS  PubMed  Google Scholar 

  55. Khodakov AY (2009) Fischer-Tropsch synthesis: Relations between structure of cobalt catalysts and their catalytic performance. Catal Today 144:251–257

    Article  CAS  Google Scholar 

  56. Sun X, Suarez AIO, Meijerink M et al (2017) Manufacture of highly loaded silica-supported cobalt Fischer-Tropsch catalysts from a metal organic framework. Nat Commun. https://doi.org/10.1038/s41467-017-01910-9

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rashed AE, Nasser A, Elkady MF et al (2023) Temperature calibration effect on FTS activity and product selectivity using Fe-MOF catalyst. Chem Environ Eng 7:100300

    CAS  Google Scholar 

  58. Zhao Z, Lu W, Feng C et al (2019) Increasing the activity and selectivity of Co-based FTS catalysts supported by carbon materials for direct synthesis of clean fuels by the addition of chromium. J Catal 370:251–264

    Article  CAS  Google Scholar 

  59. Luo QX, Guo LP, Yao SY et al (2019) Cobalt nanoparticles confined in carbon matrix for probing the size dependence in Fischer-Tropsch synthesis. J Catal 369:143–156

    Article  CAS  Google Scholar 

  60. Janani H, Mirzaei AA, Rezvani A (2019) Correlation of metal–organic framework structures and catalytic performance in Fischer-Tropsch synthesis process. React Kinet Mech Catal 128:205–215

    Article  CAS  Google Scholar 

  61. Kang SH, Ryu JH, Kim JH et al (2012) Role of ZSM5 distribution on Co/SiO2 fischer-tropsch catalyst for the production of C5–C22 hydrocarbons. Energy Fuels 26:6061–6069

    Article  CAS  Google Scholar 

  62. Park G, Ahn C, Park S et al (2020) Diffusion-dependent upgrading of hydrocarbons synthesized by Co/zeolite bifunctional Fischer-Tropsch catalysts. Appl Catal A Gen 607:117840

    Article  CAS  Google Scholar 

  63. Prieto G, Concepción P, Murciano R et al (2013) The impact of pre-reduction thermal history on the metal surface topology and site-catalytic activity of Co / SiO2 Fischer-Tropsch catalysts. J Catal 302:37–48

    Article  CAS  Google Scholar 

  64. Mitchell RW, Lloyd DC, van de Water LGA et al (2018) Effect of pretreatment method on the nanostructure and performance of supported Co catalysts in Fischer-Tropsch synthesis. ACS Catal 8:8816–8829

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the TICAD-7 for funding the M.Sc. degree for the first author. The Graphene Center of Excellence at EJUST provided laboratories, analyses, and materials for this study. This work was done as part of the Academy of Scientific Research and Technology (ASRT) funded research project “Green Integrated Solar Fuel Production System: Two Steps and Direct FT Synthesis Routs” (ID: 7825) and “Graphene Center for Energy and Electronic applications GCEE” project (ID: 31306) supported by the Science, Technology & Innovation Funding Authority (STDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawal Maradun Kabir.

Ethics declarations

Competing Interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabir, L.M., Albolkany, M.K., Mohamed, M.M. et al. Porous Carbon-Supported Cobalt Catalyst for CO Hydrogenation to Gasoline Range Hydrocarbons. Catal Lett (2024). https://doi.org/10.1007/s10562-023-04567-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-023-04567-w

Keywords

Navigation