Skip to main content

Advertisement

Log in

Optimization of Ruthenium Particle Size and Ceria Support for Enhanced Activity of Ru/CeO2 Cluster Catalysts in Ammonia Synthesis Under Mild Conditions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

To meet the increasing demand for small-scale NH3 production, catalysts that work under milder conditions than those of the Haber–Bosch process are essential. In this study, Ru clusters and nanoparticles were impregnated on five different CeO2 supports to prepare Ru/CeO2 catalysts for NH3 synthesis at 400 °C and 0.1 MPa. The basicity of the CeO2 support and Ru particle size significantly influenced the catalytic activity. The catalytic activity increased with decreasing Ru particle size, reaching the maximum of ~ 200 mmol gRu−1 h−1 at ~ 1 nm, which is ascribed to a high proportion of unique active sites different from the B5-type sites. Our findings demonstrate that Ru cluster catalysts are advantageous over Ru nanoparticle catalysts for NH3 synthesis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Klerke A, Christensen CH, Nørskov JK, Vegge T (2008) Ammonia for hydrogen storage: challenges and opportunities. J Mater Chem 18:2304–2310

    Article  CAS  Google Scholar 

  2. Zamfirescu C, Dincer I (2009) Ammonia as a green fuel and hydrogen source for vehicular applications. Fuel Process Technol 90:729–737

    Article  CAS  Google Scholar 

  3. Wang Q, Guo J, Chen PJ (2019) Recent progress towards mild-condition ammonia synthesis. Energy Chem 36:25–36

    Article  Google Scholar 

  4. Saadatjou N, Jafari A, Sahebdelfar S (2015) Ruthenium nanocatalysts for ammonia synthesis: a review. Chem Eng Commun 202:420–448

    Article  CAS  Google Scholar 

  5. Marakatti VS, Gaigneaux EM (2020) Recent advances in heterogeneous catalysis for ammonia synthesis. ChemCatChem 12:5838–5857

    Article  CAS  Google Scholar 

  6. Humphreys J, Lan R, Tao S (2021) Development and recent progress on ammonia synthesis catalysts for Haber-Bosch process. Adv Energy Sustain Res 2:2000043

    Article  CAS  Google Scholar 

  7. Aika K, Takano T, Murata S (1992) Preparation and characterization of chlorine-free ruthenium catalysts and the promoter effect in ammonia synthesis. 3. A magnesia-supported ruthenium catalyst. J Catal 136:126–140

    Article  CAS  Google Scholar 

  8. Niwa Y, Aika K (1996) The effect of lanthanide oxides as a support for ruthenium catalysts in ammonia synthesis. J Catal 162:138–142

    Article  CAS  Google Scholar 

  9. Sato K, Imamura K, Kawano Y, Miyahara S, Yamamoto T, Matsumura S, Nagaoka K (2017) A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis. Chem Sci 8:674–679

    Article  PubMed  CAS  Google Scholar 

  10. Kitano M, Inoue Y, Sasase M, Kishida K, Kobayashi Y, Nishiyama K, Tada T, Kawamura S, Yokoyama T, Hara M, Hosono H (2018) Self-organized ruthenium–barium core–shell nanoparticles on a mesoporous calcium amide matrix for efficient low-temperature ammonia synthesis. Angew Chem Int Ed 57:2648–2652

    Article  CAS  Google Scholar 

  11. Sato K, Miyahara S, Ogura Y, Tsujimaru K, Wada Y, Toriyama T, Yamamoto T, Matsumura S, Nagaoka K (2020) Surface dynamics for creating highly active Ru sites for ammonia synthesis: accumulation of a low-crystalline, oxygen-deficient nanofraction. ACS Sustain Chem Eng 8:726–2734

    Article  Google Scholar 

  12. Hattori M, Iijima S, Nakao T, Hosono H, Hara M (2020) Solid solution for catalytic ammonia synthesis from nitrogen and hydrogen gases at 50 °C. Nat Commun 11:2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ma Z, Zhao S, Pei X, Xiong X, Hu B (2017) New insights into the support morphology-dependent ammonia synthesis activity of Ru/CeO2 catalysts. Catal Sci Technol 7:191–199

    Article  CAS  Google Scholar 

  14. Lin B, Liu Y, Heng L, Wang X, Ni J, Lin J, Jiang L (2018) Morphology effect of ceria on the catalytic performances of Ru/CeO2 catalysts for ammonia synthesis. Ind Eng Chem Res 57:9127–9135

    Article  CAS  Google Scholar 

  15. Liu P, Nlu R, Li W, Wang S, Li J (2019) Morphology effect of ceria on the ammonia synthesis activity of Ru/CeO2 catalysts. Catal Lett 149:1007–1016

    Article  CAS  Google Scholar 

  16. Li W, Liu P, Niu R, Li J, Wang S (2020) Influence of CeO2 supports prepared with different precipitants over Ru/CeO2 catalysts for ammonia synthesis. Solid State Sci 99:105983

    Article  CAS  Google Scholar 

  17. Manaka Y, Nagata Y, Kobayashi K, Kobayashi D, Nanba T (2020) The effect of a ruthenium precursor on the low-temperature ammonia synthesis activity over Ru/CeO2. Dalton Trans 49:17143–17146

    Article  PubMed  CAS  Google Scholar 

  18. Jacobsen CJH, Dahl S, Hansen PL, Törnqvist E, Jensen L, Topsøe H, Prip DV, Møenshaug PB, Chorkendorff I (2000) Structure sensitivity of supported ruthenium catalysts for ammonia synthesis. J Mol Catal A 163:19–26

    Article  CAS  Google Scholar 

  19. Qiu J-Z, Hu J, Lan J, Wang L-F, Fu G, Xiao R, Ge B, Jiang J (2019) Pure siliceous zeolite-supported Ru single-atom active sites for ammonia synthesis. Chem Mater 31:9413–9421

    Article  CAS  Google Scholar 

  20. Li J, Wang W, Chen W, Gong Q, Luo J, Lin R, Xin H, Zhang H, Wang D, Peng Q, Zhu W, Chen C, Li Y (2018) Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the “size shackles.” Nano Res 11:4774–4785

    Article  CAS  Google Scholar 

  21. Li L, Jiang YF, Zhang T, Cai H, Zhou Y, Lin B, Lin X, Zheng Y, Zheng L, Wang X, Xu CQ, Au C, Jiang L, Li J (2022) Size sensitivity of supported Ru catalysts for ammonia synthesis: from nanoparticles to subnanometric clusters and atomic clusters. Chem 8:749–768

    Article  CAS  Google Scholar 

  22. Peng X, Chen X, Zhou Y, Sun F, Zhang T, Zheng L, Jiang L, Wang X (2022) Size-dependent activity of supported Ru catalysts for ammonia synthesis at mild conditions. J Catal 408:98–108

    Article  CAS  Google Scholar 

  23. Takeguchi T, Manabe S, Kikuchi R, Eguchi K, Kanazawa T, Matsumoto S, Ueda W (2005) Determination of dispersion of precious metals on CeO2-containing supports. Appl Catal A 293:91–96

    Article  CAS  Google Scholar 

  24. Liu L, Zhang X, Ju X, Feng J, Wang J, Chen P (2021) Ru nanoparticles on a Cs-loaded MgO superbase as highly efficient catalysts for ammonia synthesis. Dalton Trans 50:12071–12078

    Google Scholar 

  25. Li W, Li DY (2005) On the correlation between surface roughness and work function in copper. J Chem Phys 122:064708

    Article  PubMed  CAS  Google Scholar 

  26. Tsuji Y, Ogasawara K, Kitano M, Kishida K, Abe H, Niwa Y, Yokoyama T, Hara M, Hosono H (2018) Control of nitrogen activation ability by Co-Mo bimetallic nanoparticle catalysts prepared via sodium naphthalenide-reduction. J Catal 364:31–39

    Article  CAS  Google Scholar 

  27. Kitano M, Inoue Y, Yamazaki Y, Hayashi F, Kanbara S, Matsuishi S, Yokoyama T, Kim S-W, Hara M, Hosono H (2012) Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat Chem 4:934–940

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Special Cluster Research Project of Genesis Research Institute, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Takeda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1437 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirabayashi, S., Ichihashi, M. & Takeda, Y. Optimization of Ruthenium Particle Size and Ceria Support for Enhanced Activity of Ru/CeO2 Cluster Catalysts in Ammonia Synthesis Under Mild Conditions. Catal Lett 154, 487–493 (2024). https://doi.org/10.1007/s10562-023-04332-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04332-z

Keywords

Navigation