Skip to main content
Log in

Hydrogenation of 2-Hydroxytetrahydrofuran to 1,4-Butanediol Over Ni–Fe/SiO2 Bimetallic Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

2-Hydroxytetrahydrofuran (HTHF) is the main by-product of hydrogenation of 1,4-butynediol (BYD) to 1,4-butanediol (BDO) in industry, which is difficult to be effectively removed in the subsequent distillation process and seriously affects the product quality. Here, a series of silica-supported bimetallic Ni–Fe catalysts with different Fe/Ni weight ratios were prepared by using incipient wetness impregnation method and investigated the effect of Fe on the catalyst performance in the hydrogenation of HTHF to BDO. In comparison with monometallic Ni and Fe catalysts, bimetallic Ni–Fe catalysts exhibited better performance for HTHF hydrogenation due to the formation of Ni–Fe alloy phase identified by XRD, TEM, STEM-EDS, H2-TPR, NH3/H2-TPD, Pyridine FTIR and XPS, etc. A mechanism is proposed to explain the promoting effect of Fe, which can be assigned to the synergism between nickel sites with high ability to activate/overflow hydrogen and Fe-containing sites with strong oxophilicity for the activation of the O-C-O bond over the tetrahydrofuran ring.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tanielyan SK, More SR, Augustine RL, Schmidt SR (2017) Continuous liquid-phase hydrogenation of 1,4-butynediol to high-purity 1,4-butanediol over particulate Raney nickel catalyst in a fixed bed reactor. Org Process Res Dev 21:327–335

    Article  CAS  Google Scholar 

  2. Pyatnitsyna EV, El’chaninov MM (2013) Liquid-phase catalytic hydrogenation of 2-butyne-1,4-diol to 1,4-butanediol at atmospheric pressure on suspended catalysts. Russ J Appl Chem 86:394–397

    Article  CAS  Google Scholar 

  3. Li H, Zhang Y, Zhang H et al (2019) The nature of the deactivation of hydrothermally stable Ni/SiO2–Al2O3 catalyst in long-time aqueous phase hydrogenation of crude 1,4-butanediol. Chin J Chem Eng 27:2960–2967

    Article  CAS  Google Scholar 

  4. Telkar MM, Rode CV, Rane VH et al (2001) Selective hydrogenation of 2-butyne-1,4-diol to 2-butene-1,4-diol: roles of ammonia, catalyst pretreatment and kinetic studies. Appl Catal A Gen 216:13–22

    Article  CAS  Google Scholar 

  5. Musolino MG, Cutrupi CMS, Donato A et al (2003) Liquid phase hydrogenation of 2-butyne-1,4-diol and 2-butene-1,4-diol isomers over Pd catalysts: roles of solvent, support and proton on activity and products distribution. J Mol Catal A Chem 195:147–157

    Article  CAS  Google Scholar 

  6. Yin D, Li C, Ren H et al (2017) Efficient Pd@MIL-101(Cr) hetero-catalysts for 2-butyne-1,4-diol hydrogenation exhibiting high selectivity. RSC Adv 7:1626–1633

    Article  CAS  Google Scholar 

  7. Wang C, Tian Y, Wu R et al (2019) Bimetallic synergy effects of phyllosilicate-derived NiCu@SiO2 catalysts for 1,4-butynediol direct hydrogenation to 1,4-butanediol. ChemCatChem 11:1–12

    Article  Google Scholar 

  8. Li C, Zhang M, Di X et al (2016) One-step synthesis of Pt@ZIF-8 catalyst for the selective hydrogenation of 1,4-butynediol to 1,4-butenediol. Chin J Catal 37:1555–1561

    Article  CAS  Google Scholar 

  9. Mauriello F, Garrone E, Musolino MG et al (2010) Conversion of cis-2-butene-1,4-diol to hydrofurans on Pd/SiO2 and Pt/SiO2 catalysts under mild conditions: a FT-IR study. J Mol Catal A Chem 328:27–34

    Article  CAS  Google Scholar 

  10. Date NS, Chikate RC, Roh H, Rode CV (2018) Bifunctional role of Pd/MMT-K 10 catalyst in direct transformation of furfural to 1,2-pentanediol. Catal Today 309:195–201

    Article  CAS  Google Scholar 

  11. Zhang X, Wang T, Ma L et al (2013) Characterization and catalytic properties of Ni and NiCu catalysts supported on ZrO2–SiO2 for guaiacol hydrodeoxygenation. Catal Commun 33:15–19

    Article  Google Scholar 

  12. Shi D, Yang Q, Peterson C et al (2019) Bimetallic Fe–Ni/SiO2 catalysts for furfural hydrogenation: identification of the interplay between Fe and Ni during deposition-precipitation and thermal treatments. Catal Today 334:162–172

    Article  CAS  Google Scholar 

  13. Gao B, Wang I, Ren L et al (2019) Catalytic performance and reproducibility of Ni/Al2O3 and Co/Al2O3 mesoporous aerogel catalysts for methane decomposition. Ind Eng Chem Res 58:798–807

    Article  CAS  Google Scholar 

  14. Pan Z, Wang R, Chen J (2018) Deoxygenation of methyl laurate as a model compound on Ni–Zn alloy and intermetallic compound catalysts: Geometric and electronic effects of oxophilic Zn. Appl Catal B Environ 224:88–100

    Article  CAS  Google Scholar 

  15. Trout WS, Kojima T, Hara T et al (2017) Selective hydrogenation of unsaturated carbonyls by Ni–Fe-based alloy catalysts. Catal Sci Technol 7:3637–3646

    Article  Google Scholar 

  16. Zhang Y, Rezayan A, Wang K et al (2023) On-demand, highly tunable, and selective 5-hydroxymethylfurfural hydrogenation to furan diols enabled by Ni and Ni3Ga alloy catalysts. ACS Catal 13:803–814

    Article  CAS  Google Scholar 

  17. Yu X, Chen J, Ren T (2014) Promotional effect of Fe on performance of Ni/SiO2 for deoxygenation of methyl laurate as a model compound to hydrocarbons. RSC Adv 4:46427–46436

    Article  CAS  Google Scholar 

  18. Khromova SA, Smirnov AA, Bulavchenko OA et al (2014) Anisole hydrodeoxygenation over Ni–Cu bimetallic catalysts: The effect of Ni/Cu ratio on selectivity. Appl Catal A Gen 470:261–270

    Article  CAS  Google Scholar 

  19. Chen Q, Cai C, Zhang X et al (2020) Amorphous FeNi–ZrO2-catalyzed hydrodeoxygenation of lignin-derived phenolic compounds to naphthenic fuel. ACS Sustain Chem Eng 8:9335–9345

    Article  CAS  Google Scholar 

  20. Yang F, Wang H, Han J et al (2020) Influence of Re addition to Ni/SiO2 catalyst on the reaction network and deactivation during hydrodeoxygenation of m-cresol. Catal Today 347:79–86

    Article  CAS  Google Scholar 

  21. Olcese R, Bettahar MM, Malaman B et al (2013) Gas-phase hydrodeoxygenation of guaiacol over iron-based catalysts: Effect of gases composition, iron load and supports (silica and activated carbon). Appl Catal B Environ 129:528–538

    Article  CAS  Google Scholar 

  22. Sitthisa S, An W, Resasco DE (2011) Selective conversion of furfural to methylfuran over silica-supported NiFe bimetallic catalysts. J Catal 284:90–101

    Article  CAS  Google Scholar 

  23. Shao Y, Wang J, Sun K et al (2021) Selective hydrogenation of furfural and its derivative over bimetallic NiFe-based catalysts: understanding the synergy between Ni sites and Ni–Fe alloy. Renew Energ 170:1114–1128

    Article  CAS  Google Scholar 

  24. Sun J, Karim AM, Zhang H et al (2013) Carbon-supported bimetallic Pd–Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol. J Catal 306:47–57

    Article  CAS  Google Scholar 

  25. Tomiyama S, Takahashi R, Sato S et al (2003) Preparation of Ni/SiO2 catalyst with high thermal stability for CO2-reforming of CH4. Appl Catal A Gen 241:349–361

    Article  CAS  Google Scholar 

  26. Yang J, Li X, Zhang J et al (2022) Reductive amination of biomass-derived 2-hydroxytetrahydropyran into 5-amino-1-pentanol over hydroxylapatite nanorod supported Ni catalysts. Catal Lett. https://doi.org/10.1007/s10562-022-04201-1

    Article  Google Scholar 

  27. Yang F, Liu D, Wang H et al (2017) Geometric and electronic effects of bimetallic Ni–Re catalysts for selective deoxygenation of m-cresol to toluene. J Catal 349:84–97

    Article  CAS  Google Scholar 

  28. Pan L, He Y, Niu M et al (2019) Selective hydrodeoxygenation of p-cresol as a model for coal tar distillate on Ni-M/SiO2 (M = Ce Co, Sn, Fe) bimetallic catalysts. RSC Adv 9:21175–21185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Cheng C, Shen D, Xiao R, Wu C (2017) Methanation of syngas (H2/CO) over the different Ni-based catalysts. Fuel 189:419–427

    Article  CAS  Google Scholar 

  30. Li X, Wan W, Chen J, Wang T (2018) Selective hydrogenation of biomass-derived 2(5H)-furanone to γ-butyrolactone over Ni-based bimetallic catalysts. ACS Sustain Chem Eng 6:16039–16046

    Article  CAS  Google Scholar 

  31. Wang L, Li D, Koike M et al (2011) Catalytic performance and characterization of Ni–Fe catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas. Appl Catal A Gen 392:248–255

    Article  CAS  Google Scholar 

  32. Han Q, Rehman MU, Wang J et al (2019) The synergistic effect between Ni sites and Ni–Fe alloy sites on hydrodeoxygenation of lignin-derived phenols. Appl Catal B Environ 253:348–358

    Article  CAS  Google Scholar 

  33. Li C, Xu G, Zhai Y et al (2017) Hydrogenation of biomass-derived ethyl levulinate into γ-valerolactone by activated carbon supported bimetallic Ni and Fe catalysts. Fuel 203:23–31

    Article  CAS  Google Scholar 

  34. Alonso DM, Wettstein SG, Dumesic JA (2012) Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41:8075–8098

    Article  PubMed  CAS  Google Scholar 

  35. Yen H, Seo Y, Kaliaguine S, Kleitz F (2015) Role of metal-support interactions, particle size, and metal-metal synergy in CuNi nanocatalysts for H2 generation. ACS Catal 5:5505–5511

    Article  CAS  Google Scholar 

  36. Cui C, Liu Y, Mehdi S et al (2020) Enhancing effect of Fe-doping on the activity of nano Ni catalyst towards hydrogen evolution from NH3BH3. Appl Catal B Environ 265:118612

    Article  CAS  Google Scholar 

  37. Gao W, Li C, Chen H et al (2014) Supported nickel–iron nanocomposites as a bifunctional catalyst towards hydrogen generation from N2H4·H2O. Green Chem 16:1560–1568

    Article  CAS  Google Scholar 

  38. Jing P, Liu M, Pu Y et al (2016) Dependence of phase configurations, microstructures and magnetic properties of iron–nickel (Fe–Ni) alloy nanoribbons on deoxidization temperature in hydrogen. Sci Rep. https://doi.org/10.1038/srep37701

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mile B, Stirling D, Zammitt MA et al (1990) TPR studies of the effects of preparation conditions on supported nickel catalysts. J Mol Catal 62:179–198

    Article  CAS  Google Scholar 

  40. Ashok J, Kawi S (2014) Nickel–iron alloy supported over iron–alumina catalysts for steam reforming of biomass tar model compound. ACS Catal 4:289–301

    Article  CAS  Google Scholar 

  41. Wu P, Sun J, Abbas M et al (2020) Hydrophobic SiO2 supported Fe–Ni bimetallic catalyst for the production of high-calorie synthetic natural gas. Appl Catal A Gen 590:117302

    Article  CAS  Google Scholar 

  42. Ishihara T, Eguchi K, Arai H (1987) Hydrogenation of carbon monoxide over SiO2-supported Fe–Co, Co–Ni and Ni–Fe bimetallic catalysts. Appl Catal 30:225–238

    Article  CAS  Google Scholar 

  43. Liu B, Xiao D, Wang Y et al (2020) Correlating C═C, C═O, and C═N hydrogenation activity with hydrogen binding energies on Ni–Fe bimetallic catalysts. J Phys Chem C 124:18595–18603

    Article  CAS  Google Scholar 

  44. Koehle M, Lobo RF (2016) Lewis acidic zeolite Beta catalyst for the meerwein-ponndorf-verley reduction of furfural. Catal Sci Technol 6:3018–3026

    Article  CAS  Google Scholar 

  45. Wang C, Jiang C, Bai J et al (2021) Effect of pore structures on 1,4-Butynediol hydrogenation over mesoporous Ni/Al2O3–SiO2 catalysts. Ind Eng Chem Res 60:17840–17849

    Article  CAS  Google Scholar 

  46. Li D, Koike M, Wang L et al (2014) Regenerability of hydrotalcite-derived nickel–iron alloy nanoparticles for syngas production from biomass tar. Chemsuschem 7:510–522

    Article  PubMed  CAS  Google Scholar 

  47. Pandey D, Deo G (2014) Promotional effects in alumina and silica supported bimetallic Ni–Fe catalysts during CO2 hydrogenation. J Mol Catal A Chem 382:23–30

    Article  CAS  Google Scholar 

  48. Huang D, Ke M, Bao X, Liu H (2016) Fe-promoted Ni/Al2O3 thioetherification catalysts with enhanced low-temperature activity for removing mercaptans from liquefied petroleum gas. Ind Eng Chem Res 55:1192–1201

    Article  Google Scholar 

  49. Modrogan E, Valkenberg M, Hoelderich W (2009) Phenol alkylation with isobutene—influence of heterogeneous Lewis and/or Brønsted acid sites. J Catal 261:177–187

    Article  CAS  Google Scholar 

  50. Del Angel G, Padilla JM, Cuauhtémoc I, Navarrete J (2008) Toluene combustion on γ-Al2O3–CeO2 catalysts prepared from boehmite and cerium nitrate. J Mol Catal A Chem 281:173–178

    Article  Google Scholar 

  51. Zhu Y, Kong X, Peng B et al (2020) Efficient Cu catalyst for 5-hydroxymethylfurfural hydrogenolysis by forming Cu–O–Si bonds. Catal Sci Technol 10:7323–7330

    Article  CAS  Google Scholar 

  52. Allred AL (1961) Electronegativity values from thermochemical data. J Inorg Nucl Chem 17:215–221

    Article  CAS  Google Scholar 

  53. Liu Q, Qiao Y, Tian Y et al (2017) Ordered mesoporous Ni–Fe–Al catalysts for CO methanation with enhanced activity and resistance to deactivation. Ind Eng Chem Res 56:9809–9820

    Article  CAS  Google Scholar 

  54. Liu X, Li Y, Deng J, Fu Y (2019) Selective hydrodeoxygenation of biomass-derived furfural-acetone to prepare 1-octyl acetate. Green Chem 21:4532–4540

    Article  CAS  Google Scholar 

  55. Nie L, de Souza PM, Noronha FB et al (2014) Selective conversion of m-cresol to toluene over bimetallic Ni–Fe catalysts. J Mol Catal A Chem 388–389:47–55

    Article  Google Scholar 

  56. Yu W, Xiong K, Ji N et al (2014) Theoretical and experimental studies of the adsorption geometry and reaction pathways of furfural over FeNi bimetallic model surfaces and supported catalysts. J Catal 317:253–262

    Article  CAS  Google Scholar 

  57. Fang H, Zheng J, Luo X et al (2017) Product tunable behavior of carbon nanotubes-supported Ni–Fe catalysts for guaiacol hydrodeoxygenation. Appl Catal A Gen 529:20–31

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the National Natural Science Foundation of China (22178202, 21603127, U1710221) and Scientific and Technological Innovation Programs (STIP) of Higher Education Institutions in Shanxi of China (2020L0018).

Funding

This study is supported by the National Natural Science Foundation of China (22178202, 21603127, U1710221) and Scientific and Technological Innovation Programs (STIP) of Higher Education Institutions in Shanxi of China (2020L0018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changzhen Wang, Haitao Li or Yongxiang Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 385 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Wang, C., Bai, J. et al. Hydrogenation of 2-Hydroxytetrahydrofuran to 1,4-Butanediol Over Ni–Fe/SiO2 Bimetallic Catalysts. Catal Lett 154, 448–460 (2024). https://doi.org/10.1007/s10562-023-04325-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04325-y

Keywords

Navigation