Skip to main content
Log in

Nanoparticle Supported Bronsted Acidic Ionic Liquid Catalyzed Synthesis of Dihydro-1H-pyrazolylnaphthalene-1,4-diones

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A novel nano-Fe3O4 supported Bronsted acidic ionic liquid ([nano-Fe3O4@BenzImi]SO3H) has been prepared by multi-step procedure and characterized by various analytical techniques. The [nano-Fe3O4@BenzImi]SO3H has been employed as a heterogeneous catalyst in the multi-component synthesis of dihydro-1H-pyrazolylnaphthalene-1,4-diones in high yields using ethanol as a green solvent. The [nano-Fe3O4@BenzImi]SO3H could be recycled up to seven catalytic cycles without a significant decrease in the yield of the products.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 3
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Davis JH Jr (2004) Task-specific ionic liquids. Chem Lett 33:1072–1077. https://doi.org/10.1246/CL.2004.1072

    Article  CAS  Google Scholar 

  2. Yue C, Fang D, Liu L, Yi TF (2011) Synthesis and application of task-specific ionic liquids used as catalysts and/or solvents in organic unit reactions. J Mol Liq 163:99–121. https://doi.org/10.1016/J.MOLLIQ.2011.09.001

    Article  CAS  Google Scholar 

  3. Padvi SA, Dalal DS (2020) Task-specific ionic liquids as a green catalysts and solvents for organic synthesis. Curr Green Chem 7:105–119. https://doi.org/10.2174/2213346107666200115153051

    Article  CAS  Google Scholar 

  4. Cole AC, Jensen JL, Ntai I et al (2002) Novel Brønsted acidic ionic liquids and their use as dual solvent−catalysts. J Am Chem Soc 124:5962–5963. https://doi.org/10.1021/JA026290W

    Article  CAS  PubMed  Google Scholar 

  5. Song H, Li Z, Chen J, Xia C (2011) Brönsted acidic ionic liquids as efficient and recyclable catalysts for the carbonylation of formaldehyde. Catal Lett 142(1):81–86. https://doi.org/10.1007/S10562-011-0708-X

    Article  Google Scholar 

  6. Vafaeezadeh M, Alinezhad H (2016) Brønsted acidic ionic liquids: green catalysts for essential organic reactions. J Mol Liq 218:95–105. https://doi.org/10.1016/J.MOLLIQ.2016.02.017

    Article  CAS  Google Scholar 

  7. Srivastava R (2010) Assessment of the catalytic activities of novel Brönsted acidic ionic liquid catalysts. Catal Lett 139(1):17–25. https://doi.org/10.1007/S10562-010-0404-2

    Article  CAS  Google Scholar 

  8. Nouri Sefat M, Saberi D, Niknam K (2011) Preparation of silica-based ionic liquid an efficient and recyclable catalyst for one-pot synthesis of α-aminonitriles. Catal Lett 141(11):1713–1720. https://doi.org/10.1007/S10562-011-0696-X

    Article  CAS  Google Scholar 

  9. Ratti R (2014) Ionic liquids: synthesis and applications in catalysis. Adv Chem 2014:1–16. https://doi.org/10.1155/2014/729842

    Article  CAS  Google Scholar 

  10. Song D, Liu J, Zhang C, Guo Y (2021) Design of Brønsted acidic ionic liquid functionalized mesoporous organosilica nanospheres for efficient synthesis of ethyl levulinate and levulinic acid from 5-hydroxymethylfurfural. Catal Sci Technol 11:1827–1842. https://doi.org/10.1039/D0CY01941K

    Article  CAS  Google Scholar 

  11. Zhang Q, Luo J, Wei Y (2010) A silica gel supported dual acidic ionic liquid: an efficient and recyclable heterogeneous catalyst for the one-pot synthesis of amidoalkyl naphthols. Green Chem 12:2246–2254. https://doi.org/10.1039/C0GC00472C

    Article  CAS  Google Scholar 

  12. Kotadia DA, Soni SS (2013) Sulfonic acid functionalized solid acid: an alternative eco-friendly approach for transesterification of non-edible oils with high free fatty acids. Monatsh Chem 144(11):1735–1741. https://doi.org/10.1007/S00706-013-1041-4

    Article  CAS  Google Scholar 

  13. Bian Y, Shan Q, Guo C et al (2021) Biodiesel production over esterification catalyzed by a novel poly(acidic ionic liquid)s. Catal Lett 151(12):3523–3531. https://doi.org/10.1007/S10562-021-03592-X

    Article  CAS  Google Scholar 

  14. Bhongale PV, Joshi SS, Mali NA (2022) Reusable and efficient polystyrene immobilized ionic liquid catalyst for batch and flow methylation of hydroquinone. Catal Lett. https://doi.org/10.1007/S10562-022-03918-3

    Article  Google Scholar 

  15. Amarasekara AS, Owereh OS (2010) Synthesis of a sulfonic acid functionalized acidic ionic liquid modified silica catalyst and applications in the hydrolysis of cellulose. Catal Commun 11:1072–1075. https://doi.org/10.1016/J.CATCOM.2010.05.012

    Article  CAS  Google Scholar 

  16. Kotadia DA, Soni SS (2012) Silica gel supported –SO3H functionalised benzimidazolium based ionic liquid as a mild and effective catalyst for rapid synthesis of 1-amidoalkyl naphthols. J Mol Catal A 353–354:44–49. https://doi.org/10.1016/J.MOLCATA.2011.11.003

    Article  Google Scholar 

  17. Safaei S, Mohammadpoor-Baltork I, Khosropour AR et al (2013) Nano-silica supported acidic ionic liquid as an efficient catalyst for the multi-component synthesis of indazolophthalazine-triones and bis-indazolophthalazine-triones. Catal Sci Technol 3:2717–2722. https://doi.org/10.1039/C3CY00344B

    Article  CAS  Google Scholar 

  18. Skoda-Földes R (2014) The use of supported acidic ionic liquids in organic synthesis. Molecules 19:8840–8884. https://doi.org/10.3390/MOLECULES19078840

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gajare S, Patil A, Hangirgekar S et al (2020) Green synthesis of quinolines via A3-coupling by using graphene oxide-supported Brønsted acidic ionic liquid. Res Chem Intermed 46(5):2417–2436. https://doi.org/10.1007/S11164-020-04099-7

    Article  CAS  Google Scholar 

  20. Centi G, Perathoner S (2003) Catalysis and sustainable (green) chemistry. Catal Today 77:287–297. https://doi.org/10.1016/S0920-5861(02)00374-7

    Article  CAS  Google Scholar 

  21. Govan J, Gun’ko YK (2014) Recent advances in the application of magnetic nanoparticles as a support for homogeneous catalysts. Nanomaterials 4:222–241. https://doi.org/10.3390/NANO4020222

    Article  PubMed  PubMed Central  Google Scholar 

  22. Abu-Dief AM, Abdel-Fatah SM (2018) Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis. Beni-Suef Univ J Basic Appl Sci 7:55–67. https://doi.org/10.1016/J.BJBAS.2017.05.008

    Article  Google Scholar 

  23. Hasany S, Abdurahman N, Sunarti A, Jose R (2013) Magnetic iron oxide nanoparticles: chemical synthesis and applications review. Curr Nanosci 9:561–575. https://doi.org/10.2174/15734137113099990085

    Article  CAS  Google Scholar 

  24. Ghazanfari MR, Kashefi M, Shams SF, Jaafari MR (2016) Perspective of Fe3O4 nanoparticles role in biomedical applications. Biochem Res Int. https://doi.org/10.1155/2016/7840161

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sangaiya P, Jayaprakash R (2018) A review on iron oxide nanoparticles and their biomedical applications. J Supercond Novel Magn 31:3397–3413. https://doi.org/10.1007/S10948-018-4841-2

    Article  CAS  Google Scholar 

  26. Ganapathe LS, Mohamed MA, Yunus RM, Berhanuddin DD (2020) Magnetite (Fe3O4) nanoparticles in biomedical application: from synthesis to surface functionalisation. Magnetochemistry 6:68. https://doi.org/10.3390/MAGNETOCHEMISTRY6040068

    Article  CAS  Google Scholar 

  27. Sharma RK, Dutta S, Sharma S et al (2016) Fe3O4 (iron oxide)-supported nanocatalysts: synthesis, characterization and applications in coupling reactions. Green Chem 18:3184–3209. https://doi.org/10.1039/C6GC00864J

    Article  CAS  Google Scholar 

  28. Gawande MB, Branco PS, Varma RS (2013) Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem Soc Rev 42:3371–3393. https://doi.org/10.1039/C3CS35480F

    Article  CAS  PubMed  Google Scholar 

  29. Shifrina ZB, Bronstein LM (2018) Magnetically recoverable catalysts: beyond magnetic separation. Front Chem 6:298. https://doi.org/10.3389/FCHEM.2018.00298

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ziarani GM, Kheilkordi Z, Mohajer F et al (2021) Magnetically recoverable catalysts for the preparation of pyridine derivatives: an overview. RSC Adv 11:17456–17477. https://doi.org/10.1039/D1RA02418C

    Article  Google Scholar 

  31. Zhang Q, Su H, Luo J, Wei Y (2012) A magnetic nanoparticle supported dual acidic ionic liquid: a “quasi-homogeneous” catalyst for the one-pot synthesis of benzoxanthenes. Green Chem 14:201–208. https://doi.org/10.1039/C1GC16031A

    Article  CAS  Google Scholar 

  32. Nguyen HT, Le Thi NP, Nguyen Chau DK, Tran PH (2018) New nano-Fe3O4-supported Lewis acidic ionic liquid as a highly effective and recyclable catalyst for the preparation of benzoxanthenes and pyrroles under solvent-free sonication. RSC Adv 8:35681–35688. https://doi.org/10.1039/C8RA04893B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nguyen TT, Le Thi NP, Nguyen TT, Tran PH (2019) An efficient multicomponent synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed by a magnetic nanoparticle supported Lewis acidic deep eutectic solvent. RSC Adv 9:38148–38153. https://doi.org/10.1039/C9RA08074K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mohammadi R, Esmati S, Gholamhosseini-Nazari M, Teimuri-Mofrad R (2018) Synthesis and characterization of a novel Fe3O4@SiO2–BenzIm-Fc[Cl]/BiOCl nano-composite and its efficient catalytic activity in the ultrasound-assisted synthesis of diverse chromene analogs. New J Chem 43:135–145. https://doi.org/10.1039/C8NJ04938F

    Article  Google Scholar 

  35. Wang S-L, Ding J, Shi F et al (2012) Green synthesis of 3-hydroxynaphthalene-1,4-dione derivatives via microwave-assisted three-component reactions in neat water. J Heterocycl Chem 49:521–525. https://doi.org/10.1002/JHET.798

    Article  CAS  Google Scholar 

  36. López LIL (2014) Naphthoquinones: biological properties and synthesis of lawsone and derivatives—a structured review. Vitae 21:248–258

    Article  Google Scholar 

  37. Jordão AK, Vargas MD, Pinto AC et al (2015) Lawsone in organic synthesis. RSC Adv 5:67909–67943. https://doi.org/10.1039/C5RA12785H

    Article  CAS  Google Scholar 

  38. Zhao Z, Dai X, Li C et al (2020) Pyrazolone structural motif in medicinal chemistry: retrospect and prospect. Eur J Med Chem 186:111893. https://doi.org/10.1016/J.EJMECH.2019.111893

    Article  CAS  PubMed  Google Scholar 

  39. Lakshmanan S, Ramalakshmi N (2016) One-pot, four-component synthesis of benzylpyrazolyl naphthoquinone derivatives and molecular docking studies. Synth Commun 46:2045–2052. https://doi.org/10.1080/00397911.2016.1244693

    Article  CAS  Google Scholar 

  40. Kumar M, Sribalan R, Padmini V (2017) Er(OTf)3 assisted efficient synthesis of 3-hydroxynaphthalene-1,4-dione derivatives via pseudo four-component reactions and their biological evaluation. Chem Sel 2:489–493. https://doi.org/10.1002/SLCT.201601340

    Article  CAS  Google Scholar 

  41. Vairaperumal V, Perumal M, Sengodu P et al (2019) V2O5-catalyzed one-pot multicomponent of pyrazol naphthoquinone as scaffolds for potential bioactive compounds: synthesis, structural study and cytotoxic activity. Chem Sel 4:3006–3010. https://doi.org/10.1002/SLCT.201803942

    Article  CAS  Google Scholar 

  42. Patil A, Gajare S, Rashinkar G, Salunkhe R (2019) β-CD-SO3H: synthesis, characterization and its application for the synthesis of benzylpyrazolyl naphthoquinone and pyrazolo pyranopyrimidine derivatives in water. Catal Lett 150:127–137. https://doi.org/10.1007/S10562-019-02928-Y

    Article  Google Scholar 

  43. Fu Z, Qian K, Li S et al (2016) MgCl2 catalyzed one-pot synthesis of 2-hydroxy-3-((5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)(phenyl)methyl)naphthalene-1,4-dione derivatives in EG. Tetrahedron Lett 57:1104–1108. https://doi.org/10.1016/J.TETLET.2016.01.089

    Article  CAS  Google Scholar 

  44. Dashteh M, Safaiee M, Baghery S, Zolfigol MA (2019) Application of cobalt phthalocyanine as a nanostructured catalyst in the synthesis of biological henna-based compounds. Appl Organomet Chem 33:e4690. https://doi.org/10.1002/AOC.4690

    Article  Google Scholar 

  45. Yarie M, Zolfigol MA, Babaee S et al (2018) Catalytic application of a nano-molten salt catalyst in the synthesis of biological naphthoquinone-based compounds. Res Chem Intermed 44:2839–2852. https://doi.org/10.1007/S11164-018-3264-9

    Article  CAS  Google Scholar 

  46. Kumbhar A, Kamble S, Jadhav S et al (2012) Silica tethered Pd–DABCO complex: an efficient and reusable catalyst for Suzuki-Miyaura reaction. Catal Lett 142(11):1388–1396. https://doi.org/10.1007/S10562-012-0912-3

    Article  CAS  Google Scholar 

  47. Kurane R, Bansode P, Khanapure S et al (2016) Intermolecular C-O coupling using hemicucurbituril supported ionic liquid phase catalyst. Catal Lett 146:2485–2494. https://doi.org/10.1007/S10562-016-1871-X/FIGURES/5

    Article  CAS  Google Scholar 

  48. Naikwade A, Jagadale M, Kale D et al (2018) Magnetic nanoparticle decorated N-heterocyclic carbene-nickel complex with pendant ferrocenyl group for C-H arylation of benzoxazole. Catal Lett 148(10):3178–3192. https://doi.org/10.1007/S10562-018-2514-1

    Article  CAS  Google Scholar 

  49. Kukade MG, Gavade NL, Kadam AN et al (2019) Magnetically retrievable cobalt ferrite nanoparticles as heterogeneous catalyst for synthesis of 1-oxo-hexahydroxanthenes. Asian J Org Med Chem 4:113–120. https://doi.org/10.14233/AJOMC.2019.AJOMC-P207

    Article  Google Scholar 

  50. Gajare S, Patil A, Kale D et al (2019) Graphene oxide-supported ionic liquid phase catalyzed synthesis of 3,4-dihydro-2H-naphtho[2,3-e][1,3]oxazine-5,10-diones. Catal Lett 150(1):243–255. https://doi.org/10.1007/S10562-019-02934-0

    Article  Google Scholar 

  51. Pawar A, Gajare S, Jagdale A et al (2021) Supported NHC-BenzImi@Cu complex as a magnetically separable and reusable catalyst for the multicomponent and click synthesis of 1,4-disubstituted 1,2,3-triazoles via Huisgen 1,3-dipolar cycloaddition. Catal Lett. https://doi.org/10.1007/S10562-021-03772-9

    Article  Google Scholar 

  52. Chandane W, Gajare S, Kagne R et al (2022) Sulfated tin oxide (SO42/SnO2): an efficient heterogeneous solid superacid catalyst for the facile synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Res Chem Intermed 2022:1–18. https://doi.org/10.1007/S11164-022-04670-4

    Article  Google Scholar 

  53. Zhao X, Shi Y, Wang T et al (2008) Preparation of silica-magnetite nanoparticle mixed hemimicelle sorbents for extraction of several typical phenolic compounds from environmental water samples. J Chromatogr A 1188:140–147. https://doi.org/10.1016/J.CHROMA.2008.02.069

    Article  CAS  PubMed  Google Scholar 

  54. Liu Q, Xu Z, Finch JA, Egerton R (1998) A novel two-step silica-coating process for engineering magnetic nanocomposites. Chem Mater 10:3936–3940. https://doi.org/10.1021/CM980370A

    Article  CAS  Google Scholar 

  55. Naikwade AG, Jagadale MB, Kale DP et al (2020) Photocatalytic degradation of methyl orange by magnetically retrievable supported ionic liquid phase photocatalyst. ACS Omega 5:131–144. https://doi.org/10.1021/ACSOMEGA.9B02040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dadhania HN, Raval DK, Dadhania AN (2015) Magnetically retrievable magnetite (Fe3O4) immobilized ionic liquid: an efficient catalyst for the preparation of 1-carbamatoalkyl-2-naphthols. Catal Sci Technol 5:4806–4812. https://doi.org/10.1039/C5CY00849B

    Article  CAS  Google Scholar 

  57. Togashi T, Naka T, Asahina S et al (2011) Surfactant-assisted one-pot synthesis of superparamagnetic magnetite nanoparticle clusters with tunable cluster size and magnetic field sensitivity. Dalton Trans 40:1073–1078. https://doi.org/10.1039/C0DT01280G

    Article  CAS  PubMed  Google Scholar 

  58. Kooti M, Afshari M (2012) Phosphotungstic acid supported on magnetic nanoparticles as an efficient reusable catalyst for epoxidation of alkenes. Mater Res Bull 47:3473–3478. https://doi.org/10.1016/J.MATERRESBULL.2012.07.001

    Article  CAS  Google Scholar 

  59. Zolfigol MA, Ayazi-Nasrabadi R (2016) Synthesis of the first magnetic nanoparticles with a thiourea dioxide-based sulfonic acid tag: application in the one-pot synthesis of 1,1,3-tri(1H-indol-3-yl) alkanes under mild and green conditions. RSC Adv 6:69595–69604. https://doi.org/10.1039/C6RA11620E

    Article  CAS  Google Scholar 

  60. Miyatake K, Iyotani H, Yamamoto K, Tsuchida E (1996) Synthesis of poly(phenylene sulfide sulfonic acid) via poly(sulfonium cation) as a thermostable proton-conducting polymer. Macromolecules 29:6969–6971. https://doi.org/10.1021/MA960768X

    Article  CAS  Google Scholar 

  61. Langner R, Zundel G (2002) FT-IR investigation of polarizable, strong hydrogen bonds in sulfonic acid sulfoxide, phosphine oxide, and arsine oxide complexes in the middle- and far-infrared region. J Phys Chem 99:12214–12219. https://doi.org/10.1021/J100032A025

    Article  Google Scholar 

  62. Panwar V, Cha K, Park JO, Park S (2012) High actuation response of PVDF/PVP/PSSA based ionic polymer metal composites actuator. Sens Actuators B 161:460–470. https://doi.org/10.1016/J.SNB.2011.10.062

    Article  CAS  Google Scholar 

  63. Saikia M, Saikia L (2016) Sulfonic acid-functionalized MIL-101(Cr) as a highly efficient heterogeneous catalyst for one-pot synthesis of 2-amino-4H-chromenes in aqueous medium. RSC Adv 6:15846–15853. https://doi.org/10.1039/C5RA28135K

    Article  CAS  Google Scholar 

  64. Ying A, Hou H, Liu S et al (2016) Ionic modified TBD supported on magnetic nanoparticles: a highly efficient and recoverable catalyst for organic transformations. ACS Sustain Chem Eng 4:625–632. https://doi.org/10.1021/ACSSUSCHEMENG.5B01757

    Article  CAS  Google Scholar 

  65. Ghosh S, Badruddoza AZ, Uddin MS, Hidajat K (2011) Adsorption of chiral aromatic amino acids onto carboxymethyl-β-cyclodextrin bonded Fe(3)O(4)/SiO(2) core–shell nanoparticles. J Colloid Interface Sci 354:483–492. https://doi.org/10.1016/J.JCIS.2010.11.060

    Article  CAS  PubMed  Google Scholar 

  66. Fakhraian H, Nafari Y (2021) Preparative, mechanistic and tautomeric investigation of 1-phenyl and 1-methyl derivative of 3-methyl-5-pyrazolone. J Chem Sci 133(2):1–11. https://doi.org/10.1007/S12039-021-01902-9

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the IIT, Bombay, NEHU, Shillong, IIT, Madras, IISc, Bangalore, Sophisticated Analytical Instrumental Facility and Common Facility Center (CFC) and Physics Instrumentation Facility Centre (PIFC), Shivaji University, Kolhapur for providing spectral facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskar Tamhankar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 43 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandane, W., Gajare, S., Patil, A. et al. Nanoparticle Supported Bronsted Acidic Ionic Liquid Catalyzed Synthesis of Dihydro-1H-pyrazolylnaphthalene-1,4-diones. Catal Lett 153, 3357–3370 (2023). https://doi.org/10.1007/s10562-022-04243-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04243-5

Keywords

Navigation