Skip to main content
Log in

Improvement of Sb-Modified Mn-Ce/TiO2 Catalyst for SO2 and H2O Resistance at Low-Temperature SCR

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Mn/TiO2, Mn-Ce/TiO2, and Sb-modified Mn-Ce-Sbx/TiO2 catalysts were prepared by the impregnation method. The catalysts were characterized by BET, XRD, XPS, SEM, NH3-TPD, FTIR, TG-DSC, H2-TPR, and the SCR (Selective Catalytic Reduction) activity, and investigated by SO2, and H2O resistance between 90 °C and 220 °C. Results showed that the molar ratio of Sb/Mn is 0.2, the catalytic activity of Mn-Ce-Sb0.2/TiO2 can reach 94% of NO conversion rate at 120 °C. Meanwhile, Mn-Ce-Sb0.2/TiO2 has the best SO2 and H2O resistance. Characterization results demonstrated that the modification of Sb can decrease the crystallinity of the Mn element, while Sb can inhibit the formation of sulfate and reduce the poisonous effect of SO2 on the catalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang F, Shen B, Zhu S, Wang Z (2019) Promotion of Fe and Co doped Mn-Ce/TiO2 catalysts for low temperature NH3-SCR with SO2 tolerance. Fuel 249:54–60. https://doi.org/10.1016/j.fuel.2019.02.113

    Article  CAS  Google Scholar 

  2. Tran K, Kilpinen P, Kumar N (2008) In-situ catalytic abatement of NOx during fluidized bed combustion - a literature study. Appl Catal B-Environ 78:129–138. https://doi.org/10.1016/j.apcatb.2007.09.004

    Article  CAS  Google Scholar 

  3. Lu X, Song C, Chang C, Teng Y, Tong Z, Tang X (2014) Manganese oxides supported on TiO2-graphene nanomposite catalysts for selective catalytic reduction of NOx with NH3 at low temperature. Ind Eng Chem Res 53:11601–11610. https://doi.org/10.1021/ie5016969

    Article  CAS  Google Scholar 

  4. Han L, Cai S, Gao M, Hasegawa J, Wang P, Zhang J, Shi L, Zhang D (2019) Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects. Chem Rev 119(19):10916–10976. https://doi.org/10.1021/acs.chemrev.9b00202

    Article  CAS  PubMed  Google Scholar 

  5. Busca G, Lietti L, Ramis G, Berti F (1998) Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review. Appl Catal B-Environ 18:1–2. https://doi.org/10.1016/S0926-3373(98)00040-X

    Article  CAS  Google Scholar 

  6. Boningari T, Smirniotis PG (2016) Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement. Curr Opin Chem Eng 13:133–141. https://doi.org/10.1016/j.coche.2016.09.004

    Article  Google Scholar 

  7. Qi G, Yang R (2003) Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania. Appl Catal B-Enviro 44:217–225. https://doi.org/10.1016/S0926-3373(03)00100-0

    Article  CAS  Google Scholar 

  8. Liu C, Shi J, Gao C, Niu C (2016) Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: A review. Appl Catal A-Gen 522:54–69. https://doi.org/10.1016/j.apcata.2016.04.023

    Article  CAS  Google Scholar 

  9. Guo RT, Sun X, Liu J, Pan WG, Li MY, Liu SM, Sun P, Liu SW (2018) Enhancement of the NH3-SCR catalytic activity of MnTiOx catalyst by the introduction of Sb. Appl Catal A-Gen 558:1–8. https://doi.org/10.1016/j.apcata.2018.03.028

    Article  CAS  Google Scholar 

  10. Jia XX, Liu H, Zhang Y, Chen W, Tong Q, Piao GX, Sun CZ, Dong L (2021) Understanding the high performance of an iron-antimony binary metal oxide catalyst in selective catalytic reduction of nitric oxide with ammonia and its tolerance of water/sulfur dioxide. J Colloid Interf Sci 581:427–441. https://doi.org/10.1016/j.jcis.2020.07.089

    Article  CAS  Google Scholar 

  11. Damma D, Pappas DK, Boningari T, Smirniotis PG (2021) Study of Ce, Sb, and Y exchanged titania nanotubes and superior catalytic performance for the selective catalytic reduction of NOx. Appl Catal B-Environ 287:119939. https://doi.org/10.1016/j.apcatb.2021.119939

    Article  CAS  Google Scholar 

  12. Phil H, Reddy M, Kumar P, Ju L, Hyo J (2008) SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures. Appl Catal B-Environ 78:301–308. https://doi.org/10.1016/j.apcatb.2007.09.012

    Article  CAS  Google Scholar 

  13. Lee K, Kumar P, Maqbool M, Rao K, Song K, Ha K (2013) Ceria added Sb-V2O5/TiO2 catalysts for low temperature NH3-SCR: Physico-chemical properties and catalytic activity. Appl Catal B-Environ 142–143:705–717. https://doi.org/10.1016/j.apcatb.2013.05.071

    Article  CAS  Google Scholar 

  14. Yao G, Wei Y, Gui K, Ling X (2022) Catalytic performance and reaction mechanisms of NO removal with NH3 at low and medium temperatures on Mn-W-Sb modified siderite catalysts. J Environ Sci 115:126–139. https://doi.org/10.1016/j.jes.2021.06.029

    Article  CAS  Google Scholar 

  15. Zhang X, Lv SS, Zhang X, Xiao K, Wu X (2021) Improvement of the activity and SO2 tolerance of Sb-modified Mn/PG catalysts for NH3-SCR at a low temperature. J Environ Sci 101:1–15. https://doi.org/10.1016/j.jes.2020.07.027

    Article  CAS  Google Scholar 

  16. Huang Z, Liu Z, Zhang X, Liu Q (2006) Inhibition effect of H2O on V2O5/AC catalyst for catalytic reduction of NO with NH3 at low temperature. Appl Catal B-Enviro 63:260–265. https://doi.org/10.1016/j.apcatb.2005.10.011

    Article  CAS  Google Scholar 

  17. Pan SW, Luo HC, Li L, Wei ZL, Huang BC (2013) H2O and SO2 deactivation mechanism of MnOx/MWCNTs for low-temperature SCR of NOx with NH3. J Mol Catal A-Chem 377:154–161. https://doi.org/10.1016/j.molcata.2013.05.009

    Article  CAS  Google Scholar 

  18. Xie H, He P, Chen C, Yang C, Chai S, Wang N, Ge C (2022) Enhanced water and sulfur resistance by Sm3+ modification of Ce-Mn/TiO2 for NH3-SCR. Catal Lett. https://doi.org/10.1007/s10562-022-04023-1

    Article  Google Scholar 

  19. Yamamoto A, Teramura K, Hosokawa S, Tanaka T (2015) Effects of SO2 on selective catalytic reduction of NO with NH3 over a TiO2 photocatalyst. Sci Technol Adv Mat 16:1–9. https://doi.org/10.1088/1468-6996/16/2/024901

    Article  CAS  Google Scholar 

  20. Centeno M, Carrizosa I, Odriozola J (2001) NO-NH3 co adsorption on vanadia titania catalysts: determination of the reduction degree of vanadium. Appl Catal B-Environ 29:307–314. https://doi.org/10.1016/S0926-3373(00)00214-9

    Article  CAS  Google Scholar 

  21. Zhang A, Zhang Z, Lu H, Liu Z, Xiang J, Zhou C, Xing W, Sun L (2015) Effect of promotion with Ru addition on the activity and SO2 resistance of MnOx –TiO2 adsorbent for Hg0 removal. Ind Eng Chem Res 54:2930–2939. https://doi.org/10.1021/acs.iecr.5b00211

    Article  CAS  Google Scholar 

  22. Yu CL, Huang BC, Dong LF, Chen F, Yang Y, Fan YM, Yang YX, Liu XQ, Wang XN (2017) Effect of Pr/Ce addition on the catalytic performance and SO2 resistance of highly dispersed MnOx/SAPO-34 catalyst for NH3-SCR at low temperature. Chem Eng J 316:1059–1068. https://doi.org/10.1016/j.cej.2017.02.024

    Article  CAS  Google Scholar 

  23. Thirupathi B, Smirniotis P (2011) Effect of nickel as dopant in Mn/TiO2 catalysts for the low-temperature selective reduction of NO with NH3. Catal Lett 141:1399–1404. https://doi.org/10.1007/s10562-011-0678-z

    Article  CAS  Google Scholar 

  24. Chi G, Shen B, Yu R, He C, Zhang X (2017) Simultaneous removal of NO and HgO over Ce-Cu modified V2O5/TiO2 based commercial SCR catalysts. J Hazard Mater 330:83–92. https://doi.org/10.1016/j.jhazmat.2017.02.013

    Article  CAS  PubMed  Google Scholar 

  25. Xie S, Li L, Jin L, Wu Y, Liu H, Qin Q, Wei X, Liu J, Dong L, Li B (2020) Low temperature high activity of M (M = Ce, Fe Co, Ni) doped M-Mn/TiO2 catalysts for NH3-SCR and in situ DRIFTS for investigating the reaction mechanism. Appl Surf Sci 515:46014. https://doi.org/10.1016/j.apsusc.2020.146014

    Article  CAS  Google Scholar 

  26. Jin R, Liu Y, Wang Y, Cen W, Wu Z, Wang H, Weng X (2014) The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature. Appl Catal B-Environ 148–149:582–588. https://doi.org/10.1016/j.apcatb.2013.09.016

    Article  CAS  Google Scholar 

  27. Wu Z, Jin R, Wang H, Liu Y (2009) Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature. Catal Commun 10:935–939. https://doi.org/10.1016/j.catcom.2008.12.032

    Article  CAS  Google Scholar 

  28. Shi Y, Pan H, Zhang Y, Li W (2008) Promotion of MgO addition on SO2 tolerance of Ag/Al2O3 for selective catalytic reduction of NOx with methane at low temperature. Catal Commun 9:796–800. https://doi.org/10.1016/j.catcom.2007.09.002

    Article  CAS  Google Scholar 

  29. Nam I, Eldridge J, Kittrell J (1986) Deactivation of a vanadia-alumina catalyst for nitric oxide reduction by ammonia. Ind Eng Chem Pro Res Dev 25:192–197. https://doi.org/10.1021/i300022a012

    Article  CAS  Google Scholar 

  30. Michalow-Mauke KA, Ye Lu, Kowalski K, Graule T, Nachtegaal M, Kröcher O, Ferri D (2015) Flame-made WO3/CeOx-TiO2 catalysts for selective catalytic reduction of NOx by NH3. ACS Catal 5(10):5657–5672. https://doi.org/10.1021/acscatal.5b01580

    Article  CAS  Google Scholar 

  31. Shen B, Wang F, Liu T (2014) Homogeneous MnOx–CeO2 pellets prepared by a one-step hydrolysis process for low-temperature NH3-SCR. Powder Technol 253:152–157. https://doi.org/10.1016/j.powtec.2013.11.015

    Article  CAS  Google Scholar 

  32. Guo Y, Liao X, He J, Ou W, Ye, (2010) Effect of manganese oxide catalyst on the dielectric barrier discharge decomposition of toluene. Catal Today 153:176–183. https://doi.org/10.1016/j.cattod.2010.03.024

    Article  CAS  Google Scholar 

  33. Kang M, Park E, Kim J, Yie J (2007) Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Appl Catal A-Gen 327:261–269. https://doi.org/10.1016/j.apcata.2007.05.024

    Article  CAS  Google Scholar 

  34. Kapteijn F, Singoredjo L, Andreini A, Moulijn J (1994) Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. Appl Catal B-Environ 3:173–189. https://doi.org/10.1016/0926-3373(93)E0034-9

    Article  CAS  Google Scholar 

  35. Li BJ, Xu XM, Zhao YB, Zhang ZJ (2013) Fabrication of Sb2O3 nanobelt bundles via a facile ultrasound-assisted room temperature liquid phase chemical route and evaluation of their optical properties. Mater Res Bull 48(3):1281–1287. https://doi.org/10.1016/j.materresbull.2012.12.031

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by Shaanxi Provincial Key R&D Program (2020SF-432).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongjie Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, D., Zhao, J., Li, J. et al. Improvement of Sb-Modified Mn-Ce/TiO2 Catalyst for SO2 and H2O Resistance at Low-Temperature SCR. Catal Lett 153, 2838–2852 (2023). https://doi.org/10.1007/s10562-022-04212-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04212-y

Keywords

Navigation