Skip to main content
Log in

15-Membered Macrocyclic Schiff-Base-Pd(0) Complex Immobilized on Fe3O4 MNPs: An Novel Nanomagnetic Catalyst for the One-Pot Three-Component C–H Chalcogenation of Azoles by S8 and Aryl Iodides

  • Published:
Catalysis Letters Aims and scope Submit manuscript

A Correction to this article was published on 30 January 2023

This article has been updated

Abstract

This fact that diaryl sulfides are important structural components in polymers, agrochemicals, natural products, and pharmaceutical intermediates has increased the attention of chemists to synthesize these compounds. In recent times, the research on the preparation of diaryl sulfides using magnetically reusable catalysts have received profound attention in organic chemistry. In this paper, we describe the fabrication and characterization of a magnetically reusable palladium nanomaterial and evaluate its catalytic activity for the preparation of diaryl sulfides through one-pot three-component coupling reaction of azoles, S8 and aryl iodides. The structure of palladium supported on magnetic nanoparticles was well characterized by a series of spectroscopic techniques including FT-IR, SEM, TEM, EDX, XRD, VSM, TGA, ICP-OES. To the best of our knowledge, it is the first report on the utilization of Pd nanomagnetic catalyst for the one-pot three-component coupling reaction of azoles, S8 and aryl iodides.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Shakeri M, Shal ZK, Van Der Voort P (2021) An overview of the challenges and progress of synthesis, characterization and applications of plugged sba-15 materials for heterogeneous catalysis. Materials (Basel). https://doi.org/10.3390/ma14175082

    Article  PubMed  Google Scholar 

  2. Hunt AJ, Anderson CWN, Bruce N et al (2014) Phytoextraction as a tool for green chemistry. Green Process Synth 3:3–22. https://doi.org/10.14315/evth-2014-0205

    Article  CAS  Google Scholar 

  3. Govan J, Gun’ko YK (2014) Recent advances in the application of magnetic nanoparticles as a support for homogeneous catalysts. Nanomaterials 4:222–241. https://doi.org/10.3390/nano4020222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Maroa S, Inambao F (2021) A review of sustainable biodiesel production using biomass derived heterogeneous catalysts. Eng Life Sci 21:790–824. https://doi.org/10.1002/elsc.202100025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Docherty SR, Rochlitz L, Payard PA, Copéret C (2021) Heterogeneous alkane dehydrogenation catalysts investigated via a surface organometallic chemistry approach. Chem Soc Rev 50:5806–5822. https://doi.org/10.1039/d0cs01424a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maleki M, Baghbanian SM, Tajbakhsh M (2018) Heteropolyacid immobilized on polymer/magnetic zeolite nanocomposite as a new and recyclable catalyst for the selective oxidation of alcohols. J Iran Chem Soc 15:359–368. https://doi.org/10.1007/s13738-017-1237-3

    Article  CAS  Google Scholar 

  7. Kim DS, Park WJ, Jun CH (2017) Metal-organic cooperative catalysis in C-H and C-C bond activation. Chem Rev 117:8977–9015. https://doi.org/10.1021/acs.chemrev.6b00554

    Article  CAS  PubMed  Google Scholar 

  8. Narimani H (2022) Research on synthesis of heterocyclic structures using ZnO NPs as catalyst. J Synth Chem 1:62–83. https://doi.org/10.22034/jsc.2022.155232

    Article  Google Scholar 

  9. Arabmarkadeh A, Javahershenas R, Kazemi M (2021) Nanomaterials: catalysis in synthesis of highly substituted heterocycles. Synth Commun 51:880–903. https://doi.org/10.1080/00397911.2020.1864646

    Article  CAS  Google Scholar 

  10. Atashkar B, Zolfigol MA, Mallakpour S (2018) Applications of biological urea-based catalysts in chemical processes. Mol Catal 452:192–246. https://doi.org/10.1016/j.mcat.2018.03.009

    Article  CAS  Google Scholar 

  11. Nair PP, Philip RM, Anilkumar G (2021) Nickel catalysts in Sonogashira coupling reactions. Org Biomol Chem 19:4228–4242. https://doi.org/10.1039/D1OB00280E

    Article  CAS  PubMed  Google Scholar 

  12. Pawar A, Gajare S, Jagdale A et al (2022) Supported NHC-benzimi@Cu complex as a magnetically separable and reusable catalyst for the multicomponent and click synthesis of 1,4-disubstituted 1,2,3-triazoles via huisgen 1,3-dipolar cycloaddition. Catal Lett 152:1854–1868. https://doi.org/10.1007/s10562-021-03772-9

    Article  CAS  Google Scholar 

  13. Niknam K, Saberi D, Molaee H, Zolfigol MA (2010) Silica-bonded S-sulfonic acid as a recyclable catalyst for the silylation of hydroxyl groups with hexamethyldisilazane (HMDS). Can J Chem 88:164–171. https://doi.org/10.1139/V09-162

    Article  CAS  Google Scholar 

  14. Wen C, Yin A, Dai W-L (2014) Recent advances in silver-based heterogeneous catalysts for green chemistry processes. Appl Catal B Environ 160–161:730–741. https://doi.org/10.1016/j.apcatb.2014.06.016

    Article  CAS  Google Scholar 

  15. De S, Dokania A, Ramirez A, Gascon J (2020) Advances in the design of heterogeneous catalysts and thermocatalytic processes for CO2Utilization. ACS Catal 10:14147–14185. https://doi.org/10.1021/acscatal.0c04273

    Article  CAS  Google Scholar 

  16. Karakhanov E, Maximov A, Zolotukhina A (2022) Heterogeneous dendrimer-based catalysts. Polymers (Basel) 14:981. https://doi.org/10.3390/polym14050981

    Article  CAS  PubMed  Google Scholar 

  17. Mirzaee M, Bahramian B, Mirebrahimi M (2016) Amine-functionalized boehmite nanoparticle-supported molybdenum and vanadium complexes: efficient catalysts for epoxidation of alkenes. Cuihua Xuebao/Chinese J Catal 37:1263–1274. https://doi.org/10.1016/S1872-2067(16)62451-8

    Article  CAS  Google Scholar 

  18. Verma M, Mandyal P, Singh D, Gupta N (2020) Recent developments in heterogeneous catalytic routes for the sustainable production of succinic acid from biomass resources. Chemsuschem 13:4026–4034. https://doi.org/10.1002/cssc.202000690

    Article  CAS  PubMed  Google Scholar 

  19. Yilmaz B, Trukhan N, Müller U (2012) Industrial outlook on zeolites and metal organic frameworks. Cuihua Xuebao/Chinese J Catal 33:3–10. https://doi.org/10.1016/s1872-2067(10)60302-6

    Article  CAS  Google Scholar 

  20. Baron R, Wildgoose GG, Compton RG (2009) Metallic nanoparticles deposited on carbon microspheres: novel materials for combinatorial electrochemistry and electroanalysis. J Nanosci Nanotechnol 9:2274–2282. https://doi.org/10.1166/jnn.2009.SE14

    Article  CAS  PubMed  Google Scholar 

  21. Lu C, Niu X, Zhang W et al (2020) Iron nanoparticles loaded on nickel sulfide nanosheets: an efficient amorphous catalyst for water oxidation. Sustain Energy Fuels 4:5498–5502. https://doi.org/10.1039/d0se01088j

    Article  CAS  Google Scholar 

  22. Bodaghifard MA, Hamidinasab M, Ahadi N (2018) Recent advances in the preparation and application of organic– inorganic hybrid magnetic nanocatalysts on multicomponent reactions. Curr Org Chem 22:234–267. https://doi.org/10.2174/1385272821666170705144854

    Article  CAS  Google Scholar 

  23. Heravi MM, Mohammadi P (2022) Layered double hydroxides as heterogeneous catalyst systems in the cross-coupling reactions: an overview. Mol Divers 26:569–587. https://doi.org/10.1007/s11030-020-10170-7

    Article  CAS  PubMed  Google Scholar 

  24. Abedi M, Hosseini M, Arabmarkadeh A, Kazemi M (2021) Magnetic nanocatalysts in A3-coupling reactions. Synth Commun 51:835–855. https://doi.org/10.1080/00397911.2020.1858320

    Article  CAS  Google Scholar 

  25. Lu F, Astruc D (2020) Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coord Chem Rev. https://doi.org/10.1016/j.ccr.2020.213180

    Article  Google Scholar 

  26. Bhalothia D, Krishnia L, Yang S-S et al (2020) Recent advancements and future prospects of noble metal-based heterogeneous nanocatalysts for oxygen reduction and hydrogen evolution reactions. Appl Sci 10:1–19. https://doi.org/10.3390/app10217708

    Article  CAS  Google Scholar 

  27. Chen MN, Mo LP, Cui ZS, Zhang ZH (2019) Magnetic nanocatalysts: synthesis and application in multicomponent reactions. Curr Opin Green Sustain Chem 15:27–37. https://doi.org/10.1016/j.cogsc.2018.08.009

    Article  Google Scholar 

  28. Sharma A, Wakode S, Sharma S et al (2020) Methods and strategies used in green chemistry: a review. Curr Org Chem 24:2555–2565. https://doi.org/10.2174/1385272824999200802025233

    Article  CAS  Google Scholar 

  29. Vogt C, Weckhuysen BM (2022) The concept of active site in heterogeneous catalysis. Nat Rev Chem 6:89–111. https://doi.org/10.1038/s41570-021-00340-y

    Article  PubMed  Google Scholar 

  30. Xu Y, Cao M, Zhang Q (2021) Recent advances and perspective on heterogeneous catalysis using metals and oxide nanocrystals. Mater Chem Front 5:151–222. https://doi.org/10.1039/d0qm00549e

    Article  CAS  Google Scholar 

  31. Chen X, Qian D, Xu G et al (2019) Magnetic Fe3O4 supported PdAu bimetallic nanoparticles with the enhanced catalytic activity for Heck and Suzuki cross-coupling reactions. Colloids Surfaces A Physicochem Eng Asp 573:67–72. https://doi.org/10.1016/j.colsurfa.2019.04.013

    Article  CAS  Google Scholar 

  32. Krishnan SG, Pua F-L, Zhang F (2021) A review of magnetic solid catalyst development for sustainable biodiesel production. Biomass Bioenerg. https://doi.org/10.1016/j.biombioe.2021.106099

    Article  Google Scholar 

  33. Sun C, Zhou R, Jianan E et al (2016) Ascorbic acid-coated Fe3O4 nanoparticles as a novel heterogeneous catalyst of persulfate for improving the degradation of 2,4-dichlorophenol. RSC Adv 6:10633–10640. https://doi.org/10.1039/c5ra22491h

    Article  CAS  Google Scholar 

  34. Korany MA, Mahgoub H, Haggag RS et al (2017) Green chemistry: analytical and chromatography. J Liq Chromatogr Relat Technol 40:839–852. https://doi.org/10.1080/10826076.2017.1373672

    Article  CAS  Google Scholar 

  35. Sadeghpour M, Olyaei A (2021) Recent advances in the synthesis of bis(pyrazolyl)methanes and their applications. Res Chem Intermed 47:4399–4441. https://doi.org/10.1007/s11164-021-04592-7

    Article  CAS  Google Scholar 

  36. Govardhana Reddy PV, Rajendra Prasad Reddy B, Venkata Krishna Reddy M et al (2021) A review on multicomponent reactions catalysed by zero-dimensional/one-dimensional titanium dioxide (TiO2) nanomaterials: promising green methodologies in organic chemistry. J Environ Manage 279:111603. https://doi.org/10.1016/j.jenvman.2020.111603

    Article  CAS  PubMed  Google Scholar 

  37. Singh MS, Chowdhury S (2012) Recent developments in solvent-free multicomponent reactions: a perfect synergy for eco-compatible organic synthesis. RSC Adv 2:4547–4592. https://doi.org/10.1039/C2RA01056A

    Article  CAS  Google Scholar 

  38. Marson CM (2012) Multicomponent and sequential organocatalytic reactions: diversity with atom-economy and enantiocontrol. Chem Soc Rev 41:7712–7722. https://doi.org/10.1039/c2cs35183h

    Article  CAS  PubMed  Google Scholar 

  39. Sinha SK, Panja S, Grover J et al (2022) Dual Ligand Enabled Nondirected C-H Chalcogenation of Arenes and Heteroarenes. J Am Chem Soc 144:12032–12042. https://doi.org/10.1021/jacs.2c02126

    Article  CAS  PubMed  Google Scholar 

  40. Cai M, Yao R, Chen L, Zhao H (2014) A simple, efficient and recyclable catalytic system for carbon-sulfur coupling of aryl halides with thioacetamide. J Mol Catal A Chem 395:349–354. https://doi.org/10.1016/j.molcata.2014.08.010

    Article  CAS  Google Scholar 

  41. Farzin S, Rahimi A, Amiri K et al (2018) Synthesis of diaryl sulfides via nickel ferrite-catalysed C─S bond formation in green media. Appl Organomet Chem 32:e4409. https://doi.org/10.1002/aoc.4409

    Article  CAS  Google Scholar 

  42. Lamani DS, Badiger SG, Singh M (2019) Formation of diaryl sulfides and sulfoxides: Synthesis, characterization and structure activity correlation studies. Phosphorus, Sulfur Silicon Relat Elem 194:789–795. https://doi.org/10.1080/10426507.2018.1547720

    Article  CAS  Google Scholar 

  43. Vásquez-Céspedes S, Ferry A, Candish L, Glorius F (2015) Heterogeneously catalyzed direct C-H thiolation of heteroarenes. Angew Chemie 54:5772–5776. https://doi.org/10.1002/anie.201411997

    Article  CAS  Google Scholar 

  44. Reddy KHV, Prakash VR, Kumar AA et al (2011) Nano copper oxide catalyzed synthesis of symmetrical diaryl sulfides under ligand free conditions. Beilstein J Org Chem 7:886–891. https://doi.org/10.3762/bjoc.7.101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gilman H, Smith Broadbent H (1947) Some basically substituted diaryl sulfides and sulfones. J Am Chem Soc 69:2053–2057. https://doi.org/10.1021/ja01200a069

    Article  CAS  Google Scholar 

  46. Kandeel MM, Youssef MSK (2005) The utility of diaryl sulfides and diaryl sulfones in heterocyclic synthesis [1993–2003]. Phosphorus, Sulfur Silicon Relat Elem 180:217–282. https://doi.org/10.1080/104265090508541

    Article  CAS  Google Scholar 

  47. Gogoi P, Gogoi SR, Kalita M, Barman P (2013) Silver ion mediated in situ synthesis of mixed diaryl sulfides from diaryl disulfides. Synlett 24:873–877. https://doi.org/10.1055/s-0032-1318482

    Article  CAS  Google Scholar 

  48. Rostami A, Rostami A, Iranpoor N, Zolfigol MA (2016) Efficient Cu-catalyzed one-pot odorless synthesis of sulfides from triphenyltin chloride, aryl halides and S8 in PEG. Tetrahedron Lett 57:192–195. https://doi.org/10.1016/j.tetlet.2015.11.093

    Article  CAS  Google Scholar 

  49. Jasim SA, Riadi Y, Majdi HS, Altimari US (2022) Nanomagnetic macrocyclic Schiff-base-Mn(ii) complex: an efficient heterogeneous catalyst for click approach synthesis of novel β-substitued-1,2,3-triazoles. RSC Adv 12:17905–17918. https://doi.org/10.1039/d2ra02587f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maleki B, Reiser O, Esmaeilnezhad E, Choi HJ (2019) SO3H-dendrimer functionalized magnetic nanoparticles (Fe3O4@D–NH–(CH2)4–SO3H): Synthesis, characterization and its application as a novel and heterogeneous catalyst for the one-pot synthesis of polyfunctionalized pyrans and polyhydroquinolines. Polyhedron 162:129–141. https://doi.org/10.1016/j.poly.2019.01.055

    Article  CAS  Google Scholar 

  51. Topal U, Aksan MA (2016) Phase stabilization of magnetite (Fe3O4) nanoparticles with B2O3 addition: a significant enhancement on the phase transition temperature. J Magn Magn Mater 406:123–128. https://doi.org/10.1016/j.jmmm.2016.01.007

    Article  CAS  Google Scholar 

  52. Ranjit S, Lee R, Heryadi D et al (2011) Copper-mediated C-H activation/C–S cross-coupling of heterocycles with thiols. J Org Chem 76:8999–9007. https://doi.org/10.1021/jo2017444

    Article  CAS  PubMed  Google Scholar 

  53. Inomata H, Toh A, Mitsui T, Fukuzawa S (2013) N-heterocyclic carbene copper(I) complex-catalyzed direct C-H thiolation of benzothiazoles. Tetrahedron Lett 54:4729–4731. https://doi.org/10.1016/j.tetlet.2013.06.104

    Article  CAS  Google Scholar 

  54. Arisawa M, Toriyama F, Yamaguchi M (2011) Rhodium-catalyzed phenylthiolation reaction of heteroaromatic compounds using α-(phenylthio)isobutyrophenone. Tetrahedron Lett 52:2344–2347. https://doi.org/10.1016/j.tetlet.2011.02.077

    Article  CAS  Google Scholar 

  55. Panda N, Jena AK, Mohapatra S (2012) Heterogeneous magnetic catalyst for S-arylation reactions. Appl Catal A Gen 433–434:258–264. https://doi.org/10.1016/j.apcata.2012.05.026

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Open fund project of Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention (SB202120), Scientific research project of Hubei Provincial Health Commission (WJ2021F028), Scientific research project of Hubei Polytechnic University (22XJZ04Y), Hubei University laboratory research project (HBSY2019-36).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: email address of Jin Liu has been updated.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1607 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Jin, S., Qin, S. et al. 15-Membered Macrocyclic Schiff-Base-Pd(0) Complex Immobilized on Fe3O4 MNPs: An Novel Nanomagnetic Catalyst for the One-Pot Three-Component C–H Chalcogenation of Azoles by S8 and Aryl Iodides. Catal Lett 153, 2581–2591 (2023). https://doi.org/10.1007/s10562-022-04194-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04194-x

Keywords

Navigation