Skip to main content
Log in

Fe-Co–Ni Trimetallic Catalysts with MOFs as Precursor for CO2 Hydrogenation to C2–C4 Hydrocarbons: Insight Into the Influence of Ni

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Thermal catalytic technology is a significant and priority method to realize the industrial application of CO2 resource utilization, and the appropriate catalyst is particularly critical. Herein, Fe–Co bimetallic catalyst and Fe–Co–Ni trimetallic catalyst were prepared with the corresponding MOFs as precursors, aiming to find out the significant role of the Ni component in thermal catalytic CO2 reduction. Different kinds of characterizations revealed that the introduction of Ni resulted in more and smaller highly dispersed metal particles, the lower collapse degree of polyhedral morphology, and the improved reduction degree of the initial catalyst. Therefore, the adsorption capacity for the reactant gas was strengthened, and more basic sites for the excitation of CO2 were present, enhancing the RWGS reaction activity and the C–C bond coupling activity to generate more C2+ hydrocarbons. As a result, compared to the Fe–Co bimetallic catalyst, the addition of Ni promoted CO2 conversion and the selectivity of C2–C4 products were significantly improved under proper proportions. Especially, among all catalysts, FCN-311, which represents the mole ratio of Fe:Co:Ni as 3:1:1, exhibits the highest C2–C4 selectivity of 78% with a CO2 conversion of 51%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wei J, Ge Q, Yao R, Wen Z, Fang C, Guo L, Xu H, Sun J (2017) Nat Commun 8:15174

    Article  PubMed  PubMed Central  Google Scholar 

  2. Xu M, Zhu M, Chen T, Xu J, Yang Z, Han Y (2021) Chem Ind Eng Prog 40:565–576

    CAS  Google Scholar 

  3. Zhang J, Lu S, Su X, Fan S, Ma Q, Zhao T (2015) J CO2 Util 12:95–100

    Article  Google Scholar 

  4. Ding F, Nie X, Liu M, Song C, Guo X (2016) Chin J Appl Chem 33:123–132

    CAS  Google Scholar 

  5. Pérez-Alonso FJ, Ojeda M, Herranz T, Rojas S, González-Carballo JM, Terreros P, Fierro JLG (2008) Catal Commun 9:1945–1948

    Article  Google Scholar 

  6. Zhang W, Wen Y, Song R, Zhang Q, Wang B, Huang W (2020) Nat Gas Ind 45:113–128

    CAS  Google Scholar 

  7. An B, Cheng K, Wang C, Wang Y, Lin W (2016) ACS Catal 6:3610–3618

    Article  CAS  Google Scholar 

  8. Liu J, Zhang A, Liu M, Hu S, Ding F, Song C, Guo X (2017) J CO2 Util 21:100–107

    Article  CAS  Google Scholar 

  9. Sengupta S, Jha A, Shende P, Maskara R, Das AK (2019) J Environ Chem Eng 7:102911

    Article  CAS  Google Scholar 

  10. Guo L, Cui Y, Zhang P, Peng X, Yoneyama Y, Yang G, Tsubaki N (2018) ChemistrySelect 3:13705–13711

    Article  CAS  Google Scholar 

  11. Cui Y, Guo L, Gao W, Wang K, Zhao H, He Y, Zhang P, Yang G, Tsubaki N (2021) ChemistrySelect 6:5241–5247

    Article  CAS  Google Scholar 

  12. Dong Z, Zhao J, Tian Y, Zhang B, Wu Y (2020) Catalysts 10:455

    Article  CAS  Google Scholar 

  13. Mutschler R, Moioli E, Luo W, Gallandat N, Züttel A (2018) J Catal 366:139–149

    Article  CAS  Google Scholar 

  14. Kim T-Y, Jo S, Lee Y, Kang S-H, Kim J-W, Lee S-C, Kim J-C (2021) Catalysts 11:697

    Article  CAS  Google Scholar 

  15. Yuan Q, Yu Y, Sherrell PC, Chen J, Bi X (2020) Chem Asian J 15:1728–1735

    Article  CAS  PubMed  Google Scholar 

  16. Yao B, Xiao T, Makgae OA, Jie X, Gonzalez-Cortes S, Guan S, Kirkland AI, Dilworth JR, Al-Megren HA, Alshihri SM (2020) Nat Commun 11:1–12

    Article  Google Scholar 

  17. Chernyak SA, Ivanov AS, Stolbov DN, Maksimov SV, Maslakov KI, Chernavskii PA, Pokusaeva YA, Koklin AE, Bogdan VI, Savilov SV (2020) Carbon 168:475–484

    Article  CAS  Google Scholar 

  18. Shaw SK, Alla SK, Meena SS, Mandal RK, Prasad NK (2017) J Magn Magn Mater 434:181–186

    Article  CAS  Google Scholar 

  19. Yang Z, Zhao T, Huang X, Chu X, Tang T, Ju Y, Wang Q, Hou Y, Gao S (2017) Chem Sci 8:473–481

    Article  CAS  PubMed  Google Scholar 

  20. Jaouen F, Serventi AM, Lefe`vre M, Dodelet JP, Bertrand P (2007) J Phys Chem C 111:5971–5976

    Article  CAS  Google Scholar 

  21. Yuan X, Wang X, Riaz MS, Dong C, Zhang Z, Huang F (2018) Catal Sci Technol 8:2427–2433

    Article  CAS  Google Scholar 

  22. Chung HT, Won JH, Zelenay P (1922) Nat Commun 2013:4

    Google Scholar 

  23. Qiao H, Yong J, Dai X, Zhang X, Ma Y, Liu M, Luan X, Cai J, Yang Y, Zhao H, Huang X (2017) J Mater Chem A 5:21320–21327

    Article  CAS  Google Scholar 

  24. Zhao H, Guo L, Gao W, Chen F, Wu X, Wang K, He Y, Zhang P, Yang G, Tsubaki N (2021) J CO2 Util 52:101700

    Article  CAS  Google Scholar 

  25. Zou Y, Liu H, Fu L, Chen Z (2005) Chinese J Nonferrous Metals 15:940–945

    CAS  Google Scholar 

  26. Xu Y, Zhai P, Deng Y, Xie J, Liu X, Wang S, Ma D (2020) Angew Chem Int Ed Engl 59:21736–21744

    Article  PubMed  Google Scholar 

  27. Tong M, Chizema LG, Chang X, Hondo E, Dai L, Zeng Y, Zeng C, Ahmad H, Yang R, Lu P (2021) Micropor Mesopor Mat 320:111105

    Article  CAS  Google Scholar 

  28. Han Y, Fang C, Ji X, Wei J, Sun J (2020) ACS Catal 10:12098–12108

    Article  CAS  Google Scholar 

  29. Hakim A, Marliza TS, Tahari NMA, Isahak RWNW, Yusop RM, Hisham WMM, Yarmo AM (2016) Ind Eng Chem Res 55:7888–7897

    Article  CAS  Google Scholar 

  30. Witoon T, Chaipraditgul N, Numpilai T, Lapkeatseree V, Limtrakul J (2021) Chem Eng Sci 233:116428

    Article  CAS  Google Scholar 

  31. Luna ML, Timoshenko J, Kordus D, Rettenmaier C, Chee SW, Hoffman AS, Bare SR, Shaikhutdinov S, Cuenya BR (2021) ACS Catal 11:6175–6185

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (51802160 and 51808296), the Natural Science Foundation of Jiangsu Province of China (BK20170938), the Startup Foundation for Introducing Talent of NUIST (2243141601034 and S8113082001), and College Students’ Enterprise and Entreprenuership Education Program of NUIST (XJDCZX202110300100, XJDCZX202110300090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunxia Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 791 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, W., Yin, J., Hu, C. et al. Fe-Co–Ni Trimetallic Catalysts with MOFs as Precursor for CO2 Hydrogenation to C2–C4 Hydrocarbons: Insight Into the Influence of Ni. Catal Lett 153, 2718–2727 (2023). https://doi.org/10.1007/s10562-022-04192-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04192-z

Keywords

Navigation