Skip to main content
Log in

An Efficient Catalytic System Based on CuI and Ionic Liquid for the Synthesis of Propargylamines Through One-Pot A3 Coupling Reactions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of ionic liquids were synthesized and their synergetic effects on the Cu catalyzed one-pot A3 coupling reactions were investigated for the synthesis of propargylamines. The results showed that the combined catalytic system based on ionic liquid [MEA][H2PO4] and CuI had excellent catalytic activity and selectivity for the target propargylamines, a series aromatic aldehyde with electro-withdrawing and donating groups and heteroaromatic aldehyde could all reach good to excellent isolated yields. This catalytic system benefit from mild reaction conditions and simple operation procedures, no volatile organic solvents and other additives were involved, and no inert gas protection were needed. In addition, the ionic liquid utilized in this work was easy to be prepared and its utilization made the catalytic system recyclable. All of these superiorities made this catalytic system efficient and eco-friendly for the synthesis of propargylamines.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2

Similar content being viewed by others

References

  1. Cho HY, Morken JP (2014) Chem Soc Rev 43:4368–4380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Palani T, Park K, Kumar MR, Jung HM, Lee S (2013) Eur J Org Chem 44:5038–5047

    Google Scholar 

  3. Bhojgude SS, Biju AT (2012) Angew Chem Int Ed 51:1520–1522

    Article  CAS  Google Scholar 

  4. Ramazani A, Ahankar H, Nafeh ZT, Joo SW (2019) Curr Org Chem 23:2783–2801

    Article  CAS  Google Scholar 

  5. Rokade BV, Barker J, Guiry PJ (2019) Chem Soc Rev 48:4766–4790

    Article  CAS  PubMed  Google Scholar 

  6. Miao JK, Sang XY, Wang Y, Deng SF, Hao WY (2020) Org Biomol Chem 17:6994–6997

    Article  Google Scholar 

  7. Yan LQ, Cai XT, He XW, Wang H, Xie MQ, Zuo YP, Shang YJ (2019) Org Biomol Chem 17:4005–4013

    Article  CAS  PubMed  Google Scholar 

  8. Jesin I, Nandi GC (2019) Eur J Org Chem 16:2704–2720

    Article  Google Scholar 

  9. Das BK, Pradhan S, Punniyamurthy T (2018) Org Lett 20:4444–4448

    Article  CAS  PubMed  Google Scholar 

  10. Peshkov VA, Pereshivko OP, Nechaev AA, Peshkov AA, Van der Eycken EV (2018) Chem Soc Rev 47:3861–3898

    Article  CAS  PubMed  Google Scholar 

  11. Oliveira IM, Pimenta DC, Zukerman-Schpector J, Stefani HA, Manarin F (2018) New J Chem 42:10118–10123

    Article  Google Scholar 

  12. Huleatt PB, Khoo ML, Chua YY, Tan TW, Liew RS, Balogh B, Deme R, Magyar K, Sheela DP, Ho HK, Sperlagh B, Matyus P, Chai CLL (2015) J Med Chem 58:1400–1419

    Article  CAS  PubMed  Google Scholar 

  13. Samadi A, Marco-Contelles J, Bolea I, Francisco LG, Unzeta LM United States Patent No.8999994

  14. Zhang Q, Chen JX, Gao WX, Ding JC, Wu HY (2010) Appl Organomet Chem 24:809–812

    Article  CAS  Google Scholar 

  15. Frindy S, Kadib AE, Lahcini M, Primo A, García H (2016) Catal Sci Technol 6:4306–4317

    Article  CAS  Google Scholar 

  16. Islam MM, Roy AS, Islam SM (2016) Catal Lett 146:1128–1138

    Article  CAS  Google Scholar 

  17. Loni M, Yazdani H, Bazgir A (2018) Catal Lett 148:3467–3476

    Article  CAS  Google Scholar 

  18. Villaverde G, Corma A, Iglesias M, Sánchez F (2012) ACS Catal 2:399–406

    Article  CAS  Google Scholar 

  19. Michael T, Monica D, Tommaso P, Valentina P, Emma G, Elisabetta R, Alessandro C, Giorgio A (2014) J Org Chem 79:7311–7320

    Article  Google Scholar 

  20. Zhu AL, Du CY, Zhang Y, Li LJ (2019) Mol Liq 279:289–293

    Article  CAS  Google Scholar 

  21. Lanke SR, Bhanage BM (2013) Appl Organomet Chem 27:729–733

    Article  CAS  Google Scholar 

  22. Gajengi AL, Sasaki T, Bhanage BM (2015) Catal Commun 72:174–179

    Article  CAS  Google Scholar 

  23. Layek S, Agrahari B, Kumari S, Anuradha P, Devendra D (2018) Catal Lett 148:2675–2682

    Article  CAS  Google Scholar 

  24. Eagalapati NP, Rajack A, Murthy YLN (2014) J Mol Catal A-Chem 381:126–131

    Article  CAS  Google Scholar 

  25. Bhatte KD, Sawant DN, Deshmukh KM, Bhanage BM (2011) Catal Commun 16:114–119

    Article  CAS  Google Scholar 

  26. Zhang ZR, Song JL, Han BX (2017) Chem Rev 117:6834–6880

    Article  CAS  PubMed  Google Scholar 

  27. Amarasekara AS (2016) Chem Rev 116:6133–6183

    Article  CAS  PubMed  Google Scholar 

  28. Liu MY, Zhang ZR, Liu HZ, Xie ZB, Mei QQ, Han BX (2018) Sci Adv 4:9319–9326

    Article  Google Scholar 

  29. Choi J, Benedetti TM, Jalili R, Walker A, Wallace GG, Officer DL (2016) Chem Eur J 22:14158–14161

    Article  CAS  PubMed  Google Scholar 

  30. Bai LJ, Huang SQ, Wang WX, Xu H, Chen H, Niu YZ, Wang MH (2015) Polym Int 64:1754–1761

    Article  CAS  Google Scholar 

  31. Li RP, Zhao YF, Wang H, Xiang JF, Wu YY, Yu B, Han BX, Liu ZM (2019) Chem Sci 10:9822–9828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bediako BBA, Qian QL, Zhang JJ, Wang Y, Shen XJ, Shi JB, Cui M, Yang GY, Wang Z, Tong SR, Han BX (2019) Green Chem 21:4152–4158

    Article  Google Scholar 

  33. Han HL, Jiang T, Wu TB, Yang DX, Han BX (2015) ChemCatChem 7:3526–3532

    Article  CAS  Google Scholar 

  34. Hu Y, Song JL, Xie C, Wu HR, Jiang T, Yang GY, Han BX (2019) ACS Sustain Chem Eng 7:5614–5619

    Article  CAS  Google Scholar 

  35. Park SB, Alper H (2005) Chem Commun 10:1315–1317

    Article  Google Scholar 

  36. Varyani M, Khatri PK, Jain SL (2016) Catal Commun 77:113–117

    Article  CAS  Google Scholar 

  37. Gholinejad M, Karimi B, Aminianfar A, Khorasani M (2015) ChemPlusChem 80:1573–1579

    Article  CAS  PubMed  Google Scholar 

  38. Zhu AL, Bai SK, Jin W, Liu RX, Li LJ, Zhao Y, Wang JJ (2014) RSC Adv 4:36031–36035

    Article  CAS  Google Scholar 

  39. Zhang YH, Zhu AL, Li QQ, Li LJ, Zhao Y, Wang JJ (2014) RSC Adv 4:22946–22950

    Article  CAS  Google Scholar 

  40. Edward L, Alaa AS, Viseux EME, Lykakis IN, Kostakis GE (2018) Cryst Growth Des 18:5638–5651

    Article  Google Scholar 

  41. Chen HB, Zhao Y, Liao Y (2015) RSC Adv 5:37737–37741

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No 21733011) and Central Plains Science and technology innovation leader Project (214200510008), Scientific and technological innovation team of colleges and universities in Henan Province (21IRTSTHN001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anlian Zhu or Lingjun Li.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 936 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, A., Wang, J., Wang, M. et al. An Efficient Catalytic System Based on CuI and Ionic Liquid for the Synthesis of Propargylamines Through One-Pot A3 Coupling Reactions. Catal Lett 153, 2074–2082 (2023). https://doi.org/10.1007/s10562-022-04109-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04109-w

Keywords

Navigation