Skip to main content
Log in

Enhanced Visible Light Response and Characterization of Nanoscale TiO2/WO3−x Composite Photocatalyst by Sol–gel Synthesis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The TiO2/WO3−x nanoscale particles with superior interfacial interactions were synthesized using tetrabutyl titanate (IV) through the sol–gel method, then calcining at 450 ℃ for 3 h. The electrical property of the photocatalyst was tuned by forming nano-size heterogeneous structures with the co-crystallization of TiO2 and tungsten oxide structures. The prepared photocatalysis samples were characterized by XRD, TEM, XPS, and UV–vis. The higher specific surface area (72.1372 m2/g) and strong interaction in the TiO2/WO3−x photocatalyst interface enhanced the photoelectrochemical activity and the bandgap was adjusted from 3.16 to 2.96 eV. It has been discovered by using methylene blue (MB) and rhodamine B (RhB), the photoresponse range of 2 mol% tungsten added TiO2/WO3−x photocatalyst has extended to the visible portion of the spectrum by the degradation of dyes and reached 94.8% and 97.4% for MB and RhB at 90 min and 100 min, respectively. TiO2/WO3−x contained a higher donor concentration due to the oxygen vacancy structure of WOx and the electrons that occurred at the defects are believed to be easier to participate in the photocatalytic reactions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fang Y, Cheng D, Niu M, Yi Y, Wu W (2013) Tailoring the electronic and optical properties of rutile TiO2 by (Nb+ Sb, C) codoping from DFT+ U calculations. Chem Phys Lett 567:34–38

    Article  CAS  Google Scholar 

  2. Dai G, Liu S, Liang Y, Liu H, Zhong Z (2013) A simple preparation of carbon and nitrogen co-doped nanoscaled TiO2 with exposed {0 0 1} facets for enhanced visible-light photocatalytic activity. J Mol Catal A 368:38–42

    Article  Google Scholar 

  3. Zhou J, Takeuchi M, Zhao X, Ray AK, Anpo M (2006) Photocatalytic decomposition of formic acid under visible light irradiation over V-ion-implanted TiO2 thin film photocatalysts prepared on quartz substrate by ionized cluster beam (ICB) deposition method. Catal Lett 106(1):67–70

    Article  CAS  Google Scholar 

  4. Moradi S, Isari AA, Hayati F, Kalantary RR, Kakavandi B (2021) Co-implanting of TiO2 and liquid-phase-delaminated g-C3N4 on multi-functional graphene nanobridges for enhancing photocatalytic degradation of acetaminophen. Chem Eng J 414:128618

    Article  CAS  Google Scholar 

  5. Moradi M, Hasanvandian F, Isari AA, Hayati F, Kakavandi B, Setayesh SR (2021) CuO and ZnO co-anchored on g-C3N4 nanosheets as an affordable double Z-scheme nanocomposite for photocatalytic decontamination of amoxicillin. Appl Catal B 285:119838

    Article  CAS  Google Scholar 

  6. Prabhu S, Cindrella L, Kwon OJ, Mohanraju K (2018) Photoelectrochemical and photocatalytic activity of TiO2-WO3 heterostructures boosted by mutual interaction. Mater Sci Semicond Process 88:10–19

    Article  CAS  Google Scholar 

  7. Reyes-Gil KR, Robinson DB (2013) WO3-enhanced TiO2 nanotube photoanodes for solar water splitting with simultaneous wastewater treatment. ACS Appl Mater Interfaces 5(23):12400–12410

    Article  CAS  PubMed  Google Scholar 

  8. de Castro IA, Avansi W, Ribeiro C (2014) WO3/TiO2 heterostructures tailored by the oriented attachment mechanism: insights from their photocatalytic properties. CrystEngComm 16(8):1514–1524

    Article  Google Scholar 

  9. Meng S, Sun W, Zhang S, Zheng X, Fu X, Chen S (2018) Insight into the transfer mechanism of photogenerated carriers for WO3/TiO2 heterojunction photocatalysts: is it the transfer of band–band or Z-scheme? Why? J Phys Chem C 122(46):26326–26336

    Article  CAS  Google Scholar 

  10. Bai S, Zhang N, Gao C, Xiong Y (2018) Defect engineering in photocatalytic materials. Nano Energy 53:296–336

    Article  CAS  Google Scholar 

  11. Zheng JY, Haider Z, Van TK, Pawar AU, Kang MJ, Kim CW, Kang YS (2015) Tuning of the crystal engineering and photoelectrochemical properties of crystalline tungsten oxide for optoelectronic device applications. CrystEngComm 17(32):6070–6093

    Article  CAS  Google Scholar 

  12. Li F, Hou Y, Yu Z, Qian L, Sun L, Huang J, Ran Q, Jiang R, Sun Q, Zhang H (2019) Oxygen deficiency introduced to Z-scheme CdS/WO3–x nanomaterials with MoS2 as the cocatalyst towards enhancing visible-light-driven hydrogen evolution. Nanoscale 11(22):10884–10895

    Article  CAS  PubMed  Google Scholar 

  13. Zhang N, Li X, Ye H, Chen S, Ju H, Liu D, Lin Y, Ye W, Wang C, Xu Q (2016) Oxide defect engineering enables to couple solar energy into oxygen activation. J Am Chem Soc 138(28):8928–8935

    Article  CAS  PubMed  Google Scholar 

  14. Huang S, Long Y, Ruan S, Zeng Y-J (2019) Enhanced photocatalytic CO2 reduction in defect-engineered Z-scheme WO3–x/g-C3N4 heterostructures. ACS Omega 4(13):15593–15599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ren Y, Wang C, Qi Y, Chen Z, Jia Y, Xu Q (2017) CO2-induced defect engineering: a new protocol by doping vacancies in 2D heterostructures for enhanced visible-light photocatalysis. Appl Surf Sci 419:573–579

    Article  CAS  Google Scholar 

  16. Yun Y, Araujo JR, Melaet G, Baek J, Archanjo BS, Oh M, Alivisatos AP, Somorjai GA (2017) Activation of tungsten oxide for propane dehydrogenation and its high catalytic activity and selectivity. Catal Lett 147(3):622–632

    Article  CAS  Google Scholar 

  17. Catauro M, Tranquillo E, Dal Poggetto G, Pasquali M, Dell’Era A, Vecchio Ciprioti S (2018) Influence of the heat treatment on the particles size and on the crystalline phase of TiO2 synthesized by the sol-gel method. Materials 11(12):2364

    Article  PubMed  PubMed Central  Google Scholar 

  18. Han J, Li Y, Yang L, Li T, Luo Y, Yang L, Luo S (2018) Mesoporous TiO2 with WO3 functioning as dopant and light-sensitizer: a highly efficient photocatalyst for degradation of organic compound. J Hazard Mater 358:44–52

    Article  CAS  PubMed  Google Scholar 

  19. Bingham S, Daoud WA (2011) Recent advances in making nano-sized TiO2 visible-light active through rare-earth metal doping. J Mater Chem 21(7):2041–2050

    Article  CAS  Google Scholar 

  20. Su C, Hong B-Y, Tseng C-M (2004) Sol–gel preparation and photocatalysis of titanium dioxide. Catal Today 96(3):119–126

    Article  CAS  Google Scholar 

  21. Macwan D, Dave PN, Chaturvedi S (2011) A review on nano-TiO2 sol–gel type syntheses and its applications. J Mater Sci 46(11):3669–3686

    Article  CAS  Google Scholar 

  22. Li Z, Zhu Y, Wang J, Guo Q, Li J (2015) Size-controlled synthesis of dispersed equiaxed amorphous TiO2 nanoparticles. Ceram Int 41(7):9057–9062

    Article  CAS  Google Scholar 

  23. Rahman I, Vejayakumaran P, Sipaut C, Ismail J, Bakar MA, Adnan R, Chee C (2007) An optimized sol–gel synthesis of stable primary equivalent silica particles. Colloids Surf A 294(1–3):102–110

    Article  CAS  Google Scholar 

  24. Zhong S, Lv C, Shen M, Wu L, Li C (2019) Synthesis of Bi2WO6 photocatalyst modified by SDBS and photocatalytic performance under visible light. J Mater Sci 30(4):4152–4163

    CAS  Google Scholar 

  25. Hasanvandian F, Moradi M, Samani SA, Kakavandi B, Setayesh SR, Noorisepehr M (2022) Effective promotion of g–C3N4 photocatalytic performance via surface oxygen vacancy and coupling with bismuth-based semiconductors towards antibiotics degradation. Chemosphere 287:132273

    Article  CAS  PubMed  Google Scholar 

  26. Hou C-H, Huang S-C, Chou P-H, Den W (2015) Removal of bisphenol A from aqueous solutions by electrochemical polymerization on a carbon aerogel electrode. J Taiwan Inst Chem Eng 51:103–108

    Article  CAS  Google Scholar 

  27. Zhang J, Wang Y, Lv R, Xu L (2010) Electrochemical tolazoline sensor based on gold nanoparticles and imprinted poly-o-aminothiophenol film. Electrochim Acta 55(12):4039–4044

    Article  CAS  Google Scholar 

  28. Velmurugan R, Sreedhar B, Swaminathan M (2011) Nanostructured AgBr loaded TiO2: an efficient sunlight active photocatalyst for degradation of reactive Red 120. Chem Cent J 5(1):1–9

    Article  Google Scholar 

  29. Jin J-H, Kim JH, Lee J-Y, Min NK (2011) Voltammetric characterization of a fully integrated, patterned single walled carbon nanotube three-electrode system on a glass substrate. Analyst 136(9):1910–1915

    Article  CAS  PubMed  Google Scholar 

  30. Ramli ZAC, Asim N, Isahak WN, Emdadi Z, Ahmad-Ludin N, Yarmo MA, Sopian K (2014) Photocatalytic degradation of methylene blue under UV light irradiation on prepared carbonaceous TiO2. Sci World J

  31. Cai A, Wang Q, Chang Y, Wang X (2017) Graphitic carbon nitride decorated with S, N co-doped graphene quantum dots for enhanced visible-light-driven photocatalysis. J Alloy Compd 692:183–189

    Article  CAS  Google Scholar 

  32. Ramar V, Moothattu S, Balasubramanian K (2018) Metal free, sunlight and white light based photocatalysis using carbon quantum dots from Citrus grandis: a green way to remove pollution. Sol Energy 169:120–127

    Article  CAS  Google Scholar 

  33. Neena D, Kondamareddy KK, Bin H, Lu D, Kumar P, Dwivedi R, Pelenovich VO, Zhao X-Z, Gao W, Fu D (2018) Enhanced visible light photodegradation activity of RhB/MB from aqueous solution using nanosized novel Fe-Cd co-modified ZnO. Sci Rep 8(1):1–12

    Google Scholar 

  34. Liu L, Li S, An Y, Sun X, Wu H, Li J, Chen X, Li H (2019) Hybridization of nanodiamond and CuFe-LDH as heterogeneous photoactivator for visible-light driven photo-fenton reaction: Photocatalytic activity and mechanism. Catalysts 9(2):118

    Article  CAS  Google Scholar 

  35. Babaei AA, Golshan M, Kakavandi B (2021) A heterogeneous photocatalytic sulfate radical-based oxidation process for efficient degradation of 4-chlorophenol using TiO2 anchored on Fe oxides@ carbon. Process Saf Environ Prot 149:35–47

    Article  CAS  Google Scholar 

  36. Zhang F, Liu Z, Lu W, Lyu C, Lyu C, Wang X (2015) The synthesis and photocatalytic properties of TiO2 nanotube array by starch-modified anodic oxidation. Photochem Photobiol 91(6):1309–1314

    Article  CAS  PubMed  Google Scholar 

  37. Liu L, Hensel J, Fitzmorris RC, Li Y, Zhang JZ (2009) Preparation and photoelectrochemical properties of CdSe/TiO2 hybrid mesoporous structures. J Phys Chem Lett 1(1):155–160

    Article  CAS  Google Scholar 

  38. Liu J, Zhang J, Yue G, Lu X, Hu Z, Zhu Y (2016) W-doped TiO2 photoanode for high performance perovskite solar cell. Electrochim Acta 195:143–149

    Article  CAS  Google Scholar 

  39. Ren G, Gao Y, Yin J, Xing A, Liu H (2011) Synthesis of high activity TiO2/WO3 photocatalyst via environmentally friendly and microwave assisted hydrothermal process. J Chem Soc Pak 33(5):666

    CAS  Google Scholar 

  40. Pan JH, Lee WI (2006) Preparation of highly ordered cubic mesoporous WO3/TiO2 films and their photocatalytic properties. Chem Mater 18(3):847–853

    Article  CAS  Google Scholar 

  41. Alov NV (2015) XPS study of MoO3 and WO3 oxide surface modification by low-energy Ar+ ion bombardment. Phys Status Solidi C 12(3):263–266

    Article  CAS  Google Scholar 

  42. Yang X-L, Gao R, Dai W-L, Fan K (2008) Influence of tungsten precursors on the structure and catalytic properties of WO3/SBA-15 in the selective oxidation of cyclopentene to glutaraldehyde. J Phys Chem C 112(10):3819–3826

    Article  CAS  Google Scholar 

  43. Thind SS, Wu G, Chen A (2012) Synthesis of mesoporous nitrogen–tungsten co-doped TiO2 photocatalysts with high visible light activity. Appl Catal B 111:38–45

    Article  Google Scholar 

  44. Rengifo-Herrera J, Mielczarski E, Mielczarski J, Castillo N, Kiwi J, Pulgarin C (2008) Escherichia coli inactivation by N, S co-doped commercial TiO2 powders under UV and visible light. Appl Catal B 84(3–4):448–456

    Article  CAS  Google Scholar 

  45. Di J, Xia J, Ji M, Wang B, Yin S, Xu H, Chen Z, Li H (2016) Carbon quantum dots induced ultrasmall BiOI nanosheets with assembled hollow structures for broad spectrum photocatalytic activity and mechanism insight. Langmuir 32(8):2075–2084

    Article  CAS  PubMed  Google Scholar 

  46. Liu H, Cao W, Su Y, Wang Y, Wang X (2012) Synthesis, characterization and photocatalytic performance of novel visible-light-induced Ag/BiOI. Appl Catal B 111:271–279

    Article  Google Scholar 

  47. Sempere D, Navalon S, Dančíková M, Alvaro M, Garcia H (2013) Influence of pretreatments on commercial diamond nanoparticles on the photocatalytic activity of supported gold nanoparticles under natural Sunlight irradiation. Appl Catal B 142:259–267

    Article  Google Scholar 

  48. Navalon S, Martin R, Alvaro M, Garcia H (2010) Gold on diamond nanoparticles as a highly efficient Fenton catalyst. Angew Chem Int Ed 49(45):8403–8407

    Article  CAS  Google Scholar 

  49. Nayak S, Mohapatra L, Parida K (2015) Visible light-driven novel g-C3N4/NiFe-LDH composite photocatalyst with enhanced photocatalytic activity towards water oxidation and reduction reaction

  50. Yu Q, Li J, Li H, Wang Q, Cheng S, Li L (2012) Fabrication, structure, and photocatalytic activities of boron-doped ZnO nanorods hydrothermally grown on CVD diamond film. Chem Phys Lett 539:74–78

    Article  Google Scholar 

  51. Nashim A, Parida K (2014) n-La2Ti2O7/p-LaCrO3: a novel heterojunction based composite photocatalyst with enhanced photoactivity towards hydrogen production. J Mater Chem A 2(43):18405–18412

    Article  CAS  Google Scholar 

  52. Boppella R, Choi CH, Moon J, Kim DH (2018) Spatial charge separation on strongly coupled 2D-hybrid of rGO/La2Ti2O7/NiFe-LDH heterostructures for highly efficient noble metal free photocatalytic hydrogen generation. Appl Catal B 239:178–186

    Article  CAS  Google Scholar 

  53. Dualeh A, Moehl T, Tétreault N, Teuscher J, Gao P, Nazeeruddin MK, Grätzel M (2013) Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. ACS Nano 8(1):362–373

    Article  PubMed  Google Scholar 

  54. Juarez-Perez EJ, Wuβler M, Fabregat-Santiago F, Lakus-Wollny K, Mankel E, Mayer T, Jaegermann W, Mora-Sero I (2014) Role of the selective contacts in the performance of lead halide perovskite solar cells. J Phys Chem Lett 5(4):680–685

    Article  CAS  PubMed  Google Scholar 

  55. Heiligtag FJ (2014) From nanoparticles to particle-based aerogels: self-assembly over several length scales. ETH Zurich

  56. Zhang L-S, Lin W-F, Xia M-Q, Leng L-H, Chen G-X, Zou J-P, Zhong L, Wei X-Y, Lu M-M, Li M-X (2014) A new approach for the synthesis of heterostructured TiO2/ZnS0.77Se0.23 composites with enhanced photocatalytic activity: a combination of solid-state and sol-gel methods. Sci Adv Mater 6(4):853–861

    Article  CAS  Google Scholar 

  57. Sharma R, Kar KK (2015) Effects of structural disorder and nitrogen content on the oxygen reduction activity of polyvinylpyrrolidone-derived multi-doped carbon. J Mater Chem A 3(22):11948–11959

    Article  CAS  Google Scholar 

  58. Hoang LH, Phu ND, Do Chung P, Guo P-C, Chen X-B, Chou WC (2017) Photocatalytic activity enhancement of Bi2WO6 nanoparticles by Gd-doping via microwave assisted method. J Mater Sci 28(16):12191–12196

    CAS  Google Scholar 

  59. Gonzalez-Pedro V, Juarez-Perez EJ, Arsyad W-S, Barea EM, Fabregat-Santiago F, Mora-Sero I, Bisquert J (2014) General working principles of CH3NH3PbX3 perovskite solar cells. Nano Lett 14(2):888–893

    Article  CAS  PubMed  Google Scholar 

  60. Hoang LH, Phu ND, Peng H, Chen X-B (2018) High photocatalytic activity N-doped Bi2WO6 nanoparticles using a two-step microwave-assisted and hydrothermal synthesis. J Alloy Compd 744:228–233

    Article  CAS  Google Scholar 

  61. Xiao Q, Zhang J, Xiao C, Tan X (2008) Photocatalytic degradation of methylene blue over Co3O4/Bi2WO6 composite under visible light irradiation. Catal Commun 9(6):1247–1253

    Article  CAS  Google Scholar 

  62. Shang Y, Cui Y, Shi R, Yang P, Wang J, Wang Y (2019) Regenerated WO2.72 nanowires with superb fast and selective adsorption for cationic dye: kinetics, isotherm, thermodynamics, mechanism. J Hazard Mater 379:120834

    Article  CAS  PubMed  Google Scholar 

  63. Shang Y, Cui Y, Shi R, Yang P (2019) Effect of acetic acid on morphology of Bi2WO6 with enhanced photocatalytic activity. Mater Sci Semicond Process 89:240–249

    Article  CAS  Google Scholar 

  64. El-Yazeed WA, Ahmed AI (2019) Photocatalytic activity of mesoporous WO3/TiO2 nanocomposites for the photodegradation of methylene blue. Inorg Chem Commun 105:102–111

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Jilin University Graduate Innovation Project (2016206). The authors appreciate the Key Laboratory of Groundwater Resources and Environment of China and the environment and resource college of Jilin University for the financial support and research facilities. We also appreciate Professor Lu Liu of Changchun institute of technology for assisting and providing facilities with the XRD and TEM experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijian Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Zhang, F., Li, C. et al. Enhanced Visible Light Response and Characterization of Nanoscale TiO2/WO3−x Composite Photocatalyst by Sol–gel Synthesis. Catal Lett 153, 2936–2949 (2023). https://doi.org/10.1007/s10562-022-04079-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04079-z

Keywords

Navigation