Skip to main content
Log in

A Positive Effect of Magnetic Field on the Catalytic Activity of Immobilized L-Asparaginase: Evaluation of its Feasibility

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Enzyme immobilization is an attractive strategy to improve enzyme stability, however, the activity significantly reduces after immobilization. To solve this issue, we designed a novel magnetic carrier that both enhanced enzyme activity and improved its stability. For this purpose, the magnetic nanoparticles were synthesized and l-asparaginase was immobilized physically. All materials were structurally and morphologically characterized. Besides, the biochemical properties of the immobilized enzyme were investigated and compared with the free one. Moreover, the activity of the immobilized enzyme was investigated under a weak magnetic field. The optimum pH and optimum temperature of the free and immobilized enzyme were found to be 8.5 and 45 °C, 7.5 and 40 °C, respectively. Moreover, even after 10 cycles of use, the immobilized enzyme retained 54% of its initial activity. Km for free and the immobilized enzyme was found to be 10.37 ± 0.5, and 7.06 ± 2.99 mM, respectively, and Vmax was found to be 138.88 ± 2.64, and 121.95 ± 1.07 µmol/min, respectively. Most importantly, the activity increased approximately 3.2-fold and 4.3-fold at 10 Hz and 20 mT, respectively. Overall, the results suggested that, if the activity of the immobilized enzyme is very low, applying a weak magnetic field may be necessary to enhance the enzyme reaction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Robinson PK (2015) Enzymes: principles and biotechnological applications. Essays Biochem 59:1–41

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lima-Ramos J, Neto W, Woodley JM (2014) Engineering of biocatalysts and biocatalytic processes. Top Catal 57:301–320

    Article  CAS  Google Scholar 

  3. Brady D, Jordaan J (2009) Advances in enzyme immobilisation. Biotechnol Lett 31:1639–1650

    Article  CAS  PubMed  Google Scholar 

  4. Garcia-Galan C, Berenguer-Murcia Á, Fernandez-Lafuente R et al (2011) Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synth Catal 353:2885–2904

    Article  CAS  Google Scholar 

  5. Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307

    Article  CAS  Google Scholar 

  6. El-Shishtawy RM, Ahmed NSE, Almulaiky YQ (2021) Immobilization of catalase on chitosan/ZnO and chitosan/ZnO/Fe2O3 nanocomposites: a comparative study. Catalysts 11:820

    Article  CAS  Google Scholar 

  7. Abdulaal WH, Almulaiky YQ, El-Shishtawy RM (2020) Encapsulation of HRP enzyme onto a magnetic Fe3O4 Np–PMMA film via casting with sustainable biocatalytic activity. Catalysts 10:181

    Article  CAS  Google Scholar 

  8. Almulaiky YQ, Al-Harbi SA (2019) A novel peroxidase from Arabian balsam (Commiphora gileadensis) stems: Its purification, characterization and immobilization on a carboxymethylcellulose/Fe3O4 magnetic hybrid material. Int J Biol Macromol 133:767–774

    Article  CAS  PubMed  Google Scholar 

  9. Mohamed SA, Al-Harbi MH, Almulaiky YQ et al (2017) Immobilization of horseradish peroxidase on Fe3O4 magnetic nanoparticles. Electron J Biotechnol 27:84–90

    Article  CAS  Google Scholar 

  10. Wasak A, Drozd R, Jankowiak D et al (2019) Rotating magnetic field as tool for enhancing enzymes properties-laccase case study. Sci Rep 9:3707

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mizuki T, Watanabe N, Nagaoka Y et al (2010) Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field. Biochem Biophys Res Commun 393:779–782

    Article  CAS  PubMed  Google Scholar 

  12. Mizuki T, Sawai M, Nagaoka Y et al (2013) Activity of lipase and chitinase immobilized on superparamagnetic particles in a rotational magnetic field. PLoS ONE 8:e66528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ates B, Ulu A, Köytepe S et al (2018) Magnetic-propelled Fe3O4-chitosan carriers enhance L-asparaginase catalytic activity: a promising strategy for enzyme immobilization. RSC Adv 8:36063–36075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Degórska O, Zdarta J, Synoradzki K et al (2021) From core-shell like structured zirconia/magnetite hybrid towards novel biocatalytic systems for tetracycline removal: synthesis, enzyme immobilization, degradation and toxicity study. J Environ Chem Eng 9:105701

    Article  Google Scholar 

  15. Li H, Qin L, Feng Y et al (2015) Preparation and characterization of highly water-soluble magnetic Fe3O4 nanoparticles via surface double-layered self-assembly method of sodium alpha-olefin sulfonate. J Magn Magn Mater 384:213–218

    Article  CAS  Google Scholar 

  16. Ulu A, Noma SAA, Koytepe S et al (2019) Chloro-modified magnetic Fe3O4@MCM-41 core–shell nanoparticles for L-asparaginase immobilization with improved catalytic activity, reusability, and storage stability. Appl Biochem Biotechnol 187:938–956

    Article  CAS  PubMed  Google Scholar 

  17. Ulu A (2020) Metal–organic frameworks (MOFs): a novel support platform for ASNase immobilization. J Mater Sci 55:6130–6144

    Article  CAS  Google Scholar 

  18. Ulu A, Ateş B (2021) Tailor-made shape memory stents for therapeutic enzymes: a novel approach to enhance enzyme performance. Int J Biol Macromol 185:966–982

    Article  CAS  PubMed  Google Scholar 

  19. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  20. Bindu VU, Mohanan PV (2020) Thermal deactivation of α-amylase immobilized magnetic chitosan and its modified forms: a kinetic and thermodynamic study. Carbohydr Res 498:108185

    Article  CAS  PubMed  Google Scholar 

  21. Taghavi F, Gholizadeh G, Saljooghi AS et al (2017) Cu(II) immobilized on Fe3O4@APTMS-DFX nanoparticles: an efficient catalyst for the synthesis of 5-substituted 1H-tetrazoles with cytotoxic activity. Medchemcomm 8:1953–1964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zeynizadeh B, Mousavi H, Sepehraddin F (2020) A green and efficient Pd-free protocol for the Suzuki-Miyaura cross-coupling reaction using Fe3O4@APTMS@Cp2ZrClx(x = 0, 1, 2) MNPs in PEG-400. Res Chem Intermed 46:3361–3382

    Article  CAS  Google Scholar 

  23. Yang L, Tian J, Meng J et al (2018) Modification and characterization of Fe3O4 nanoparticles for use in adsorption of alkaloids. Molecules 23:562

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhao S, Hao N, Zhang JXJ et al (2021) Fabrication of monodisperse magnetic nanorods for improving hyperthermia efficacy. J Nanobiotechnol 19:63

    Article  CAS  Google Scholar 

  25. Gu L, Wang Y, Han J et al (2017) Phenylboronic acid-functionalized core–shell magnetic composite nanoparticles as a novel protocol for selective enrichment of fructose from a fructose–glucose aqueous solution. New J Chem 41:13399–13407

    Article  CAS  Google Scholar 

  26. Han Y, Zhang X, Zheng L et al (2021) Engineering actively magnetic crosslinked inclusion bodies of Candida antarctica lipase B: an efficient and stable biocatalyst for enzyme-catalyzed reactions. Mol Catal 504:111467

    Article  CAS  Google Scholar 

  27. Farhan LO, Mehdi WA, Taha EM et al (2021) Various type immobilizations of isocitrate dehydrogenases enzyme on hyaluronic acid modified magnetic nanoparticles as stable biocatalysts. Int J Biol Macromol 182:217–227

    Article  CAS  PubMed  Google Scholar 

  28. Gong J, Lin X (2003) Facilitated electron transfer of hemoglobin embedded in nanosized Fe3O4 matrix based on paraffin impregnated graphite electrode and electrochemical catalysis for trichloroacetic acid. Microchem J 75:51–57

    Article  CAS  Google Scholar 

  29. Ulu A, Noma SAA, Koytepe S et al (2018) Magnetic Fe3O4@MCM-41 core–shell nanoparticles functionalized with thiol silane for efficient L-asparaginase immobilization. Artif Cells Nanomed Biotechnol 46:1035–1045

    Article  CAS  PubMed  Google Scholar 

  30. Noma SAA, Ulu A, Koytepe S et al (2020) Preparation and characterization of amino and carboxyl functionalized core-shell Fe3O4/SiO2 for L-asparaginase immobilization: a comparison study. Biocatal Biotransform 38:392–404

    Article  CAS  Google Scholar 

  31. Ulu A, Ozcan I, Koytepe S et al (2018) Design of epoxy-functionalized Fe3O4@MCM-41 core–shell nanoparticles for enzyme immobilization. Int J Biol Macromol 115:1122–1130

    Article  CAS  PubMed  Google Scholar 

  32. Favela-Camacho SE, Samaniego-Benítez EJ, Godínez-García A et al (2019) How to decrease the agglomeration of magnetite nanoparticles and increase their stability using surface properties. Colloids Surf A 574:29–35

    Article  CAS  Google Scholar 

  33. Distasio JA, Niederman RA, Kafkewitz D et al (1976) Purification and characterization of L-asparaginase with anti-lymphoma activity from Vibrio succinogenes. J Biol Chem 251:6929–6933

    Article  CAS  PubMed  Google Scholar 

  34. Alam S, Ahmad R, Pranaw K et al (2018) Asparaginase conjugated magnetic nanoparticles used for reducing acrylamide formation in food model system. Bioresour Technol 269:121–126

    Article  CAS  PubMed  Google Scholar 

  35. Noma SAA, Ulu A, Acet Ö et al (2020) Comparative study of ASNase immobilization on tannic acid-modified magnetic Fe3O4/SBA-15 nanoparticles to enhance stability and reusability. New J Chem 44:4440–4451

    Article  CAS  Google Scholar 

  36. Ozyilmaz E, Sayin S, Arslan M et al (2014) Improving catalytic hydrolysis reaction efficiency of sol–gel-encapsulated Candida rugosa lipase with magnetic β-cyclodextrin nanoparticles. Colloids Surf B 113:182–189

    Article  CAS  Google Scholar 

  37. Zhao J, Ma M, Yan X et al (2022) Immobilization of lipase on β-cyclodextrin grafted and aminopropyl-functionalized chitosan/Fe3O4 magnetic nanocomposites: an innovative approach to fruity flavor esters esterification. Food Chem 366:130616

    Article  CAS  PubMed  Google Scholar 

  38. Orhan H, Uygun DA (2020) Immobilization of L-asparaginase on magnetic nanoparticles for cancer treatment. Appl Biochem Biotechnol 191:1432–1443

    Article  CAS  PubMed  Google Scholar 

  39. Tarhan T, Ulu A, Sariçam M et al (2020) Maltose functionalized magnetic core/shell Fe3O4@Au nanoparticles for an efficient L-asparaginase immobilization. Int J Biol Macromol 142:443–451

    Article  CAS  PubMed  Google Scholar 

  40. Mu X, Qiao J, Qi L et al (2014) Poly(2-vinyl-4,4-dimethylazlactone)-functionalized magnetic nanoparticles as carriers for enzyme immobilization and its application. ACS Appl Mater Interfaces 6:21346–21354

    Article  CAS  PubMed  Google Scholar 

  41. Keerti GA, Kumar V et al (2014) Kinetic characterization and effect of immobilized thermostable β-glucosidase in alginate gel beads on sugarcane juice. ISRN Biochem 2014:178498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ahmed SA, Saleh SAA, Abdel-Hameed SAM et al (2019) Catalytic, kinetic and thermodynamic properties of free and immobilized caseinase on mica glass-ceramics. Heliyon 5:e01674

    Article  PubMed  PubMed Central  Google Scholar 

  43. Noma SAA, Acet Ö, Ulu A et al (2020) L-Asparaginase immobilized p(HEMA-GMA) cryogels: a recent study for biochemical, thermodynamic and kinetic parameters. Polym Test 93:106980

    Article  Google Scholar 

  44. El-Refai HA, Shafei MS, Mostafa H et al (2016) Comparison of free and immobilized L-asparaginase synthesized by gamma-irradiated penicillium cyclopium. Polish J Microbiol 65:43–50

    Article  Google Scholar 

  45. Jankowska K, Zdarta J, Grzywaczyk A et al (2020) Electrospun poly(methyl methacrylate)/polyaniline fibres as a support for laccase immobilisation and use in dye decolourisation. Environ Res 184:109332

    Article  CAS  PubMed  Google Scholar 

  46. Kaushal J, Seema SG et al (2018) Immobilization of catalase onto chitosan and chitosan–bentonite complex: a comparative study. Biotechnol Rep 18:e00258

    Article  Google Scholar 

  47. Ahmed SA, Abdella MAA, El-Sherbiny GM et al (2020) Catalytic, kinetic and thermal properties of free and immobilized Bacillus subtilis-MK1 α-amylase on chitosan-magnetic nanoparticles. Biotechnol Rep 26:e00443

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Scientific Research Projects Unit of Inönü University (project number FYL-2019-1865) and to the National Boron Research Institute to recognize the financial support. This study was derived from the master thesis presented by Gamze Dik (2021-685201).

Author information

Authors and Affiliations

Authors

Contributions

GD: Methodology, Formal Analysis, and Writing-Original Draft Preparation. AU: Conceptualization, Methodology, Formal Analysis, Writing-Original Draft Preparation, and Writing-Reviewing and Editing. OOI: Investigation, Methodology, Formal Analysis. SA: Conceptualization, Investigation, Methodology, Formal Analysis, Resources, Supervision, Writing-Original Draft Preparation, and Writing-Reviewing and Editing. BA: Conceptualization, Investigation, Methodology, Formal Analysis, Resources, Supervision, Writing-Original Draft Preparation, and Writing-Reviewing and Editing.

Corresponding authors

Correspondence to Ahmet Ulu or Burhan Ateş.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1145 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dik, G., Ulu, A., Inan, O.O. et al. A Positive Effect of Magnetic Field on the Catalytic Activity of Immobilized L-Asparaginase: Evaluation of its Feasibility. Catal Lett 153, 1250–1264 (2023). https://doi.org/10.1007/s10562-022-04075-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04075-3

Keywords

Navigation