Skip to main content
Log in

Cobalt(II)-Imidazoles Passivated α-Fe2O3 Photoanode for Enhanced Photoelectrochemical Water Oxidation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Two types of cobalt imidazole complexes, e.g. cobalt 2-methylimidazole (Co-MIm) and cobalt 1-ethylimidazole (Co-EIm), are adopted as surface passivation agents to modify the Sn-doped α-Fe2O3 nanorods (Sn-Fe2O3 NRs) photoanode by a facile impregnation method. Systematic characterizations are performed and the fabricated photoanodes are applied to photoelectrochemical (PEC) water oxidation. Interestingly, the cobalt imidazoles nanosheets are embedded into the Sn-Fe2O3 NRs film to form crack-like gaps and NRs bundles on the surface of the composite photoanodes, e.g. Co-MIm@Sn-Fe2O3 and Co-EIm@Sn-Fe2O3. With simulated sunlight irradiation and an applied potential of 1.23 V (vs. RHE), the photocurrent densities of the Co-EIm@Sn-Fe2O3 and Co-MIm@Sn-Fe2O3 reach 0.81 mA/cm2 and 0.61 mA/cm2 with enhanced stability, respectively, compared with 0.36 mA/cm2 of the Sn-Fe2O3. The gaps and bundles on the surface of the composite photoanodes make the surface rougher and improve their light absorption ability. Moreover, the cobalt imidazoles as passivation agents can effectively inhibit surface states from capturing charge carriers, reduce charge recombination and facilitate charge transfer, thus improving the PEC performance. Notably, it is found that the cobalt imidazole with a longer alkyl chain, e.g. Co-EIm, is more effective than the Co-MIm.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shindell D, Smith CJ (2019) Nature 573:408–411

    Article  CAS  PubMed  Google Scholar 

  2. Hong Y, Jeon SH, Jeong H, Ryu H (2021) Ceram Int 47:7814–7823

    Article  CAS  Google Scholar 

  3. Chen D, Liu Z, Guo Z, Ruan M, Yan W (2019) Chemsuschem 12:3286–3295

    Article  CAS  PubMed  Google Scholar 

  4. Sharma P, Jang J-W, Lee JS (2019) ChemCatChem 11:157–179

    Article  CAS  Google Scholar 

  5. Gonçalves RH, Lima BHR, Leite ER (2011) J Am Chem Soc 133:6012–6019

    Article  PubMed  Google Scholar 

  6. Yi S-S, Wulan B-R, Yan J-M, Jiang Q (2019) Adv Funct Mater 29:1801902

    Article  Google Scholar 

  7. Wang L, Nguyen NT, Huang X, Schmuki P, Bi Y (2017) Adv Funct Mater 27:1703527

    Article  Google Scholar 

  8. Makimizu Y, Nguyen NT, Tucek J, Ahn H-J, Yoo J, Poornajar M, Hwang I, Kment S, Schmuki P (2020) Chem-Eur J 26:2685–2692

    Article  CAS  PubMed  Google Scholar 

  9. Chen S, Li J, Bai J, Xia L, Zhang Y, Li L, Xu Q, Zhou B (2018) Appl Cataly B: Environ 237:175–184

    Article  CAS  Google Scholar 

  10. Ma H, Hwang JB, Chae WS, Chung HS, Choi SH, Mahadik MA, Lee HH, Jang JS (2021) Appl Surf Sci 549:149233

    Article  CAS  Google Scholar 

  11. Sun J, Xia W, Zheng Q, Zeng X, Liu W, Liu G, Wang P (2020) ACS Omega 5:12339–12345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Peerakiatkhajohn P, Yun J-H, Chen H, Lyu M, Butburee T, Wang L (2016) Adv Mater 28:6405–6410

    Article  CAS  PubMed  Google Scholar 

  13. Quang ND, Hu W, Chang HS, Van PC, Viet DD, Jeong J-R, Seo DB, Kim ET, Kim C, Kim D (2021) Chem Eng J 417:129278

    Article  CAS  Google Scholar 

  14. Li Y, Wu Q, Chen Y, Zhang R, Li C, Zhang K, Li M, Lin Y, Wang D, Zou X, Xie T (2021) Appl Cataly B: Environ 290:120058

    Article  CAS  Google Scholar 

  15. Lin Y, Xu Y, Mayer MT, Simpson ZI, McMahon G, Zhou S, Wang D (2012) J Am Chem Soc 134:5508–5511

    Article  CAS  PubMed  Google Scholar 

  16. Li W, Wang K, Yang X, Zhan F, Wang Y, Liu M, Qiu X, Li J, Zhan J, Li Q, Liu Y (2020) Chem Eng J 379:122256

    Article  CAS  Google Scholar 

  17. Lei B, Xu D, Wei B, Xie T, Xiao C, Jin W, Xu L (2021) ACS Appl Mater Inter 13:4785–4795

    Article  CAS  Google Scholar 

  18. Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann TW (2012) J Am Chem Soc 134:16693–16700

    Article  CAS  PubMed  Google Scholar 

  19. Li H, Yin M, Li X, Mo R (2021) Chemsuschem 14:2331–2340

    Article  CAS  PubMed  Google Scholar 

  20. Wu J, Huang P, Fan H, Wang G, Liu W (2020) ACS Appl Mater Inter 12:30304–30312

    Article  CAS  Google Scholar 

  21. Fu Y, Lu Y-R, Ren F, Xing Z, Chen J, Guo P, Pong W-F, Dong C-L, Zhao L, Shen S (2020) Solar RRL 4:1900349

    Article  CAS  Google Scholar 

  22. Jeon TH, Moon G-H, Park H, Choi W (2017) Nano Energy 39:211–218

    Article  CAS  Google Scholar 

  23. Chai X, Zhang H, Pan Q, Bian J, Chen Z, Cheng C (2019) Appl Surf Sci 470:668–676

    Article  CAS  Google Scholar 

  24. Steier L, Herraiz-Cardona I, Gimenez S, Fabregat-Santiago F, Bisquert J, Tilley SD, Grätzel M (2014) Adv Funct Mater 24:7681–7688

    Article  CAS  Google Scholar 

  25. Vittal JJ, Quah HS (2017) Dalton Trans 46:7120–7140

    Article  CAS  PubMed  Google Scholar 

  26. Bonin J, Maurin A, Robert M (2017) Coordin Chem Rev 334:184–198

    Article  CAS  Google Scholar 

  27. Cai G, Jiang H-L (2017) Angew Chem Int Ed 56:563–567

    Article  CAS  Google Scholar 

  28. Kong X-J, Lin Z, Zhang Z-M, Zhang T, Lin W (2016) Angew Chem Int Ed 55:6411–6416

    Article  CAS  Google Scholar 

  29. Zhou S, Yue P, Huang J, Wang L, She H, Wang Q (2019) Chem Eng J 371:885–892

    Article  CAS  Google Scholar 

  30. McNamara WR, Han Z, Alperin PJ, Brennessel WW, Holland PL, Eisenberg R (2011) J Am Chem Soc 133:15368–15371

    Article  CAS  PubMed  Google Scholar 

  31. Zhou W, Niu F, Mao SS, Shen S (2018) Appl Cataly B: Environ 220:362–366

    Article  CAS  Google Scholar 

  32. Wang H, He X, Li W, Chen H, Fang W, Tian P, Xiao F, Zhao L (2019) Chem Commun 55:11382–11385

    Article  CAS  Google Scholar 

  33. Zhong L, Ding J, Qian J, Hong M (2021) Coordin Chem Rev 434:213804

    Article  CAS  Google Scholar 

  34. Zhang B, Dong G, Wang L, Zhang Y, Ding Y, Bi Y (2017) Cataly Sci Technol 7:4971–4976

    Article  CAS  Google Scholar 

  35. Rivera-Torrente M, Mandemaker LDB, Filez M, Delen G, Seoane B, Meirer F, Weckhuysen BM (2020) Chem Soc Rev 49:6694–6732

    Article  CAS  PubMed  Google Scholar 

  36. Wang S, Hou Y, Lin S, Wang X (2014) Nanoscale 6:9930–9934

    Article  CAS  PubMed  Google Scholar 

  37. Cai G, Zhang W, Jiao L, Yu S-H, Jiang H-L (2017) Chem 2:791–802

    Article  CAS  Google Scholar 

  38. Li L, Zhang H, Liu C, Liang P, Mitsuzaki N, Chen Z (2019) Energy Technol 7:1801069

    Article  Google Scholar 

  39. Wang K, Liu Y, Kawashima K, Yang X, Yin X, Zhan F, Liu M, Qiu X, Li W, Mullins CB, Li J (2020) Adv Sci 7:2002563

    Article  CAS  Google Scholar 

  40. Wu F, Xie J, You Y, Zhao Z, Wang L, Chen X, Yang P, Huang Y (2020) ACS Appl Energy Mater 3:4867–4876

    Article  CAS  Google Scholar 

  41. Chang H, Shang Z, Kong Q, Liu P, Liu J (2019) Luo Ha. Chem Eng J 370:314–321

    Article  CAS  Google Scholar 

  42. Ling Y, Wang G, Wheeler DA, Zhang JZ, Li Y (2011) Nano Lett 11:2119–2125

    Article  CAS  PubMed  Google Scholar 

  43. Yuan Y, Gu J, Ye K-H, Chai Z, Yu X, Chen X, Zhao C, Zhang Y, Mai W (2016) ACS Appl Mater Inter 8:16071–16077

    Article  CAS  Google Scholar 

  44. Das A, Nair RG (2020) J Alloy Comp 817:153277

    Article  CAS  Google Scholar 

  45. Feng X, Lin S, Li M, Bo X, Guo L (2017) Anal Chim Acta 984:96–106

    Article  CAS  PubMed  Google Scholar 

  46. Kwon HT, Jeong H-K, Lee AS, An HS, Lee JS (2015) J Am Chem Soc 137:12304–12311

    Article  CAS  PubMed  Google Scholar 

  47. Tang F, Cheng W, Su H, Zhao X, Liu Q (2018) ACS Appl Mater Inter 10:6228–6234

    Article  CAS  Google Scholar 

  48. Yang J-S, Wu J-J (2017) Nano Energy 32:232–240

    Article  CAS  Google Scholar 

  49. Lee YH, Chitumalla RK, Jang BY, Jang J, Thogiti S, Kim JH (2016) Dyes Pigments 133:161–172

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Fund of Hunan Provincial Education Department (21A0089) and the Natural Science Foundation of Hunan Province (2019JJ50595).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jikai Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 1167 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H., Chen, J., Wen, L. et al. Cobalt(II)-Imidazoles Passivated α-Fe2O3 Photoanode for Enhanced Photoelectrochemical Water Oxidation. Catal Lett 152, 3294–3303 (2022). https://doi.org/10.1007/s10562-021-03909-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03909-w

Keywords

Navigation