Skip to main content
Log in

Ethanol Steam Reforming by Ni Catalysts for H2 Production: Evaluation of Gd Effect in CeO2 Support

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ni-based catalysts supported on CeO2 doped with Gd were prepared in this work to investigate the role of gadolinium on ethanol conversion, H2 selectivity, and carbon formation on ethanol steam reforming reaction. For this, catalysts containing 5 wt% of Ni impregnated on supports of ceria modified with different amounts of Gd (1, 5, and 10 wt%) were used. Ex-situ studies of XRPD suggest an increase of the lattice parameters, indicating a solid solution formation between Gd and Ce. Results of TPR showed an increase in metal-support interactions as the content of Gd increased. In situ XRPD studies indicated the formation of a GdNiO ternary phase for the catalysts containing Gd, which is in agreement with the results obtained by XANES. The catalysts were tested at three temperatures: 400 °C, 500 °C, and 600 °C. The conversion and productivity showed dependence with the Gd content and also with the temperature of the reaction. After the catalytic tests, catalysts containing Gd presented filamentous carbon possible due to a change in the reaction pathway. The highest ethanol conversion and H2 productivity were obtained at 600 °C for all catalysts and the best catalyst at this temperature was 5Ni_5GdCeO2. The promising performance of this catalyst may be associate with the lowest formation of GdNiO ternary phase, among the catalysts containing Gd, which means more Ni0 active species available to convert ethanol.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Index Mundi. Daily price of crude oil barrel INDEX MUNDI: INDEX MUNDI; 2020 Available at http://www.indexmundi.com/pt/pre%E7os-de-mercado/?mercadoria=petróleo-bruto-brent&meses=300.

  2. Satyapal S, Petrovic J, Read C, Thomas G, Ordaz G (2007) The U.S. Department of Energy’s National Hydrogen Storage Project: progress towards meeting hydrogen-powered vehicle requirements. Catal Today 120(3–4):246–256

    Article  CAS  Google Scholar 

  3. Vaidya PD, Rodrigues AE (2006) Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chem Eng J 117(1):39–49

    Article  CAS  Google Scholar 

  4. Augusto BL, Noronha FB, Fonseca FC, Tabuti FN, Colman RC, Mattos LV (2014) Nickel/gadolinium-doped ceria anode for direct ethanol solid oxide fuel cell. Int J Hydrogen Energy 39(21):11196–11209

    Article  CAS  Google Scholar 

  5. Renewable Fuel Association. World fuel ethanol production 2017. Available at http://www.ethanolrfa.org/resources/industry/statistics/#1454099103927-61e598f7-7643

  6. Yoo S, Park S, Song JH, Kim DH (2020) Hydrogen production by the steam reforming of ethanol over K-promoted Co/Al2O3–CaO xerogel catalysts. Mol Catal 491:110980

    Article  CAS  Google Scholar 

  7. Bac S, Keskin S, Avci AK (2019) Recent advances in materials for high purity H2 production by ethanol and glycerol steam reforming. Int J Hydrogen Energy 45:34888–34917

    Article  Google Scholar 

  8. Pashchenko D (2019) Thermochemical recuperation by ethanol steam reforming: thermodynamic analysis and heat balance. Int J Hydrogen Energy 44(59):30865–30875

    Article  CAS  Google Scholar 

  9. Vizcaíno AJ, Carrero A, Calles JA (2016) Comparison of ethanol steam reforming using Co and Ni catalysts supported on SBA-15 modified by Ca and Mg. Fuel Process Technol 146:99–109

    Article  Google Scholar 

  10. Song JH, Han SJ, Yoo J, Park S, Kim DH, Song IK (2016) Effect of Sr content on hydrogen production by steam reforming of ethanol over Ni-Sr/Al2O3–ZrO2 xerogel catalysts. J Mol Catal A—Chem 418–419:68–77

    Article  Google Scholar 

  11. Campos CH, Osorio-Vargas P, Flores-González N, Fierro JLG, Reyes P (2016) Effect of Ni loading on lanthanide (La and Ce) promoted γ-Al2O3 catalysts applied to ethanol steam reforming. Catal Lett 146(2):433–441

    Article  CAS  Google Scholar 

  12. Cifuentes B, Hernández M, Monsalve S, Cobo M (2016) Hydrogen production by steam reforming of ethanol on a RhPt/CeO2/SiO2 catalyst: synergistic effect of the Si: Ce ratio on the catalyst performance. Appl Catal A 523:283–293

    Article  CAS  Google Scholar 

  13. Zanchet D, Santos JBO, Damyanova S, Gallo JMR, Bueno JMC (2015) Toward understanding metal-catalyzed ethanol reforming. ACS Catal 5(6):3841–3863

    Article  CAS  Google Scholar 

  14. Mattos LV, Jacobs G, Davis BH, Noronha FB (2012) Production of hydrogen from ethanol: review of reaction mechanism and catalyst deactivation. Chem Rev 112(7):4094–4123

    Article  CAS  PubMed  Google Scholar 

  15. Niazi Z, Irankhah A, Wang Y, Arandiyan H (2020) Cu, Mg and Co effect on nickel-ceria supported catalysts for ethanol steam reforming reaction. Int J Hydrogen Energy 45:21512–21522

    Article  CAS  Google Scholar 

  16. Chagas CA, Manfro RL, Toniolo FS (2020) Production of hydrogen by steam reforming of ethanol over Pd-promoted Ni/SiO2 catalyst. Catal Lett 150(12):3424–3436

    Article  CAS  Google Scholar 

  17. Yang T, Zhang G, Zhang Q, Liu B, Zhang L (2020) Magnesium modified mesh-TYPE Cu/γ–Al2O3/Al catalysts: low acid density catalysts for methanol steam reforming. Catal Lett 150(10):2978–2990

    Article  CAS  Google Scholar 

  18. Ye JL, Wang YQ, Liu Y, Wang H (2008) Steam reforming of ethanol over Ni/CexTi1−xO2 catalysts. Int J Hydrogen Energy 33(22):6602–6611

    Article  CAS  Google Scholar 

  19. Yee A, Morrison SJ, Idriss H (2000) The reactions of ethanol over M/CeO2 catalysts: evidence of carbon–carbon bond dissociation at low temperatures over Rh/CeO2. Catal Today 63(2–4):327–335

    Article  CAS  Google Scholar 

  20. Durgasri DN, Vinodkumar T, Lin F, Alxneit I, Reddy BM (2014) Gadolinium doped cerium oxide for soot oxidation: influence of interfacial metal–support interactions. Appl Surf Sci 314:592–598

    Article  CAS  Google Scholar 

  21. Inaba H, Tagawa H (1996) Ceria-based solid electrolytes. Solid State Ionics 83(1):1–16

    Article  CAS  Google Scholar 

  22. He D, Hao H, Chen D, Liu J, Yu J, Lu J et al (2017) Synthesis and application of rare-earth elements (Gd, Sm, and Nd) doped ceria-based solid solutions for methyl mercaptan catalytic decomposition. Catal Today 281(Part 3):559–565

    Article  CAS  Google Scholar 

  23. Wang M, Yang J, Chi B, Pu J, Li J (2020) High performance Ni exsolved and Cu added La0.8Ce0.2Mn0.6Ni0.4O3-based perovskites for ethanol steam reforming. Int J Hydrogen Energy 45(33):16458–16468

    Article  CAS  Google Scholar 

  24. da Costa LOO, da Silva AM, Noronha FB, Mattos LV (2012) The study of the performance of Ni supported on gadolinium doped ceria SOFC anode on the steam reforming of ethanol. Int, J Hydrogen Energy 37(7):5930–5939

    Article  Google Scholar 

  25. Augusto BL, Costa LOO, Noronha FB, Colman RC, Mattos LV (2012) Ethanol reforming over Ni/CeGd catalysts with low Ni content. Int J Hydrogen Energy 37(17):12258–12270

    Article  CAS  Google Scholar 

  26. Iriondo A, Barrio VL, Cambra JF, Arias PL, Guemez MB, Sanchez-Sanchez MC et al (2010) Glycerol steam reforming over Ni catalysts supported on ceria and ceria-promoted alumina. Int J Hydrogen Energy 35(20):11622–11633

    Article  CAS  Google Scholar 

  27. Dantas SC, Escritori JC, Soares RR, Hori CE (2010) Effect of different promoters on Ni/CeZrO2 catalyst for autothermal reforming and partial oxidation of methane. Chem Eng J 156(2):380–387

    Article  CAS  Google Scholar 

  28. Predel B (1993) Ce–Gd (Cerium–Gadolinium). In: Madelung O (ed) Phase equilibria, crystallographic and thermodynamic data of binary alloys Ca–Cd–Co–Zr. Springer, Heidelberg, pp 1–3

    Google Scholar 

  29. Zhang F, Jin Q, Chan S-W (2004) Ceria nanoparticles: size, size distribution, and shape. J Appl Phys 95(8):4319–4326

    Article  CAS  Google Scholar 

  30. Deshpande S, Patil S, Kuchibhatla SV, Seal S (2005) Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl Phys Lett 87(13):133113

    Article  Google Scholar 

  31. Rooksby H (1948) A note on the structure of nickel oxide at subnormal and elevated temperatures. Acta Crystallogr 1(4):226

    Article  CAS  Google Scholar 

  32. Ebiad M, Abd El-Hafiz D, Elsalamony R, Mohamed L (2012) Ni supported high surface area CeO2–ZrO2 catalysts for hydrogen production from ethanol steam reforming. RSC Adv 2(21):8145–8156

    Article  CAS  Google Scholar 

  33. Roy B, Leclerc CA (2015) Study of preparation method and oxidization/reduction effect on the performance of nickel–cerium oxide catalysts for aqueous-phase reforming of ethanol. J Power Sources 299:114–124

    Article  CAS  Google Scholar 

  34. Soni B, Makkar S, Biswas S (2021) Effects of surface structure and defect behavior on the magnetic, electrical, and photocatalytic properties of Gd-doped CeO2 nanoparticles synthesized by a simple chemical process. Mater Charact 174:110990

    Article  CAS  Google Scholar 

  35. Kurtaran S, Kellegöz M, Köse S (2021) Characterization of Gd doped CeO2 thin films grown by ultrasonic spray pyrolysis. Opt Mater 117:111144

    Article  CAS  Google Scholar 

  36. Chandradass J, Nam B, Kim KH (2009) Fine tuning of gadolinium doped ceria electrolyte nanoparticles via reverse microemulsion process. Colloids Surf A 348(1):130–136

    Article  CAS  Google Scholar 

  37. Baudouin D, Szeto KC, Laurent P, De Mallmann A, Fenet B, Veyre L et al (2012) Nickel–silicide colloid prepared under mild conditions as a versatile Ni precursor for more efficient CO2 reforming of CH4 catalysts. J Am Chem Soc 134(51):20624–20627

    Article  CAS  PubMed  Google Scholar 

  38. Liu Z, Xu W, Yao S, Johnson-Peck AC, Zhao F, Michorczyk P et al (2015) Superior performance of Ni–W–Ce mixed-metal oxide catalysts for ethanol steam reforming: synergistic effects of W- and Ni-dopants. J Catal 321:90–99

    Article  CAS  Google Scholar 

  39. de Freitas ST, Reis CGM, Lucrédio AF, Assaf EM, Assaf JM (2014) Hydrogen production from oxidative reforming of methane on Ni/γ–Al2O3 catalysts: effect of support promotion with La, La–Ce and La–Zr. Fuel Process Technol 127:97–104

    Article  Google Scholar 

  40. Hormes J, Pantelouris M, Balazs GB, Rambabu B (2000) X-ray absorption near edge structure (XANES) measurements of ceria-based solid electrolytes. Solid State Ionics 136–137(Supplement C):945–954

    Article  Google Scholar 

  41. Profeti LPR, Ticianelli EA, Assaf EM (2009) Production of hydrogen via steam reforming of biofuels on Ni/CeO2–Al2O3 catalysts promoted by noble metals. Int J Hydrogen Energy 34(12):5049–5060

    Article  CAS  Google Scholar 

  42. Xiao Z, Li Y, Hou F, Wu C, Pan L, Zou J et al (2019) Engineering oxygen vacancies and nickel dispersion on CeO2 by Pr doping for highly stable ethanol steam reforming. Appl Catal B-Environ 258:117940

    Article  CAS  Google Scholar 

  43. Auprêtre F, Descorme C, Duprez D (2002) Bio-ethanol catalytic steam reforming over supported metal catalysts. Catal Commun 3(6):263–267

    Article  Google Scholar 

  44. Bichon P, Haugom G, Venvik HJ, Holmen A, Blekkan EA (2008) Steam reforming of ethanol over supported Co and Ni catalysts. Top Catal 49(1):38–45

    Article  CAS  Google Scholar 

  45. da Silva AAA, Bion N, Epron F, Baraka S, Fonseca FC, Rabelo-Neto RC et al (2017) Effect of the type of ceria dopant on the performance of Ni/CeO2 SOFC anode for ethanol internal reforming. Appl Catal B-Environ 206(Supplement C):626–641

    Article  Google Scholar 

  46. de Lima SM, da Silva AM, da Costa LOO, Graham UM, Jacobs G, Davis BH et al (2009) Study of catalyst deactivation and reaction mechanism of steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Co/CeO2 catalyst. J Catal 268(2):268–281

    Article  Google Scholar 

  47. Biswas P, Kunzru D (2008) Oxidative steam reforming of ethanol over Ni/CeO2–ZrO2 catalyst. Chem Eng J 136(1):41–49

    Article  CAS  Google Scholar 

  48. Takanabe K, Aika K-I, Seshan K, Lefferts L (2006) Catalyst deactivation during steam reforming of acetic acid over Pt/ZrO2. Chem Eng J 120(1–2):133–137

    Article  CAS  Google Scholar 

  49. Baker RTK (1989) Catalytic growth of carbon filaments. Carbon 27(3):315–323

    Article  CAS  Google Scholar 

  50. Hou T, Zhang S, Chen Y, Wang D, Cai W (2015) Hydrogen production from ethanol reforming: catalysts and reaction mechanism. Renew Sustain Energy Rev 44(Supplement C):132–148

    Article  CAS  Google Scholar 

  51. Sharma YC, Kumar A, Prasad R, Upadhyay SN (2017) Ethanol steam reforming for hydrogen production: latest and effective catalyst modification strategies to minimize carbonaceous deactivation. Renew Sustain Energy Rev 74(Supplement C):89–103

    Article  CAS  Google Scholar 

  52. Zhang B, Tang X, Li Y, Cai W, Xu Y, Shen W (2006) Steam reforming of bio-ethanol for the production of hydrogen over ceria-supported Co Ir and Ni catalysts. Catal Commun 7(6):367–372

    Article  CAS  Google Scholar 

  53. Llorca J, Homs NS, Sales J, de la Piscina PRR (2002) Efficient production of hydrogen over supported cobalt catalysts from ethanol steam reforming. J Catal 209(2):306–317

    Article  CAS  Google Scholar 

  54. Menezes JPDSQ, Dias APDS, da Silva MAP, Souza MMVM (2020) Effect of alkaline earth oxides on nickel catalysts supported over γ-alumina for butanol steam reforming: coke formation and deactivation process. Int J Hydrogen Energy 45(43):22906–22920

    Article  CAS  Google Scholar 

  55. Braga AH, Ribeiro MC, Noronha FB, Galante D, Bueno JMC, Santos JBO (2018) Effects of Co addition to supported Ni catalysts on hydrogen production from oxidative steam reforming of ethanol. Energy Fuels 32(12):12814–12825

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Pesquisa e Desenvolvimento (CNPq, process 304883/2016-6) and Fundação de Amparo à Pesquisa (FAPESP, Projects No 2015/06246-7 and 2014/50279-4) for the financial support and the scholarships, Laboratório Nacional de Luz Síncrotron (LNLS) for XRPD and XANES facilities, Laboratório Multiusuário de Microscopia de Alta Resolução (LAbMIC) for TEM experiments. Particularly, G. F. thanks A. J for the TG experiments.

Author information

Authors and Affiliations

Authors

Contributions

GRF prepared the materials and conducted catalytic tests. AFL and FGEN contributed to the experiments. EMA supervised and coordinated the project. All authors discussed and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Elisabete M. Assaf.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 407 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, G.R., Nogueira, F.G.E., Lucrédio, A.F. et al. Ethanol Steam Reforming by Ni Catalysts for H2 Production: Evaluation of Gd Effect in CeO2 Support. Catal Lett 152, 3125–3145 (2022). https://doi.org/10.1007/s10562-021-03875-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03875-3

Keywords

Navigation