Skip to main content

Advertisement

Log in

Highly Effective Rh/NaNbO3 Catalyst for the Selective Hydrogenation of Benzoic Acid to Cyclohexane Carboxylic Acid Under Mild Conditions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Rh/NaNbO3 catalyst was prepared by a facile solvothermal method combined with photo-deposition technique. Over this catalyst, both conversion and selectivity were up to 100.0% in ten reaction recycles for the selective hydrogenation of benzoic acid to cyclohexane carboxylic acid at room temperature and 0.5 MPa H2 pressure. TOF value of the catalyst was 207 h−1 for this hydrogenation reaction. The excellent performance and the mild hydrogenation conditions were among the best of the reference catalysts with different supports or surface metal active component. Multiple characterization techniques were adopted to further study the essence of the superior hydrogenation performance. It was found that the abundant oxygen vacancies and the reduction in situ of Rh species accounted for the excellent hydrogenation performance. Besides, the reducible perovskite support, small Rh species particle, specific morphology and pore structure of the catalyst also played important roles in improving the hydrogenation reaction. After eleven hydrogenation recycles, the inactivation of the catalyst was also investigated, and attributed to the carbon deposition and the leaching of Rh species during hydrogenation process. It is an attractive work to design the highly efficient catalysts for benzoic acid hydrogenation with potential application value.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Toyao T, Siddiki SMAH, Touchy AS, Onodera W, Kon K, Morita Y, Kamachi T, Yoshizawa K, Shimizu K-I (2017) Chem Eur J 23:1001

    Article  CAS  PubMed  Google Scholar 

  2. Nie R, Miao M, Du W, Shi J, Liu Y, Hou Z (2016) Appl Catal B: Environ 180:607

    Article  CAS  Google Scholar 

  3. Ali MA, Abutaleb A (2021) Catal Lett 27.

  4. Grootendorst EJ, Pestman R, Koster RM, Ponec V (1994) J Catal 148:261

    Article  CAS  Google Scholar 

  5. Rayhan U, Kowser Z, Islam MN, Redshaw C, Yamato T (2018) Top Catal 61:560

    Article  CAS  Google Scholar 

  6. Takahashi M, Imaoka T, Hongo Y, Yamamoto K (2013) Angew Chem Int Ed 52:7419

    Article  CAS  Google Scholar 

  7. Xu X, Tang M, Li M, Li H, Wang Y (2014) ACS Catal 4:3132

    Article  CAS  Google Scholar 

  8. Zhang H, Dong J, Qiao X, Qin J, Sun H, Wang A, Niu L, Bai G (2019) J Catal 372:258

    Article  CAS  Google Scholar 

  9. Zhao S, Cai J, Hou Q, Zhao D, Shen J (2021) Catal Sci Technol 11:3070

    Article  CAS  Google Scholar 

  10. Vu KB, Bukhryakov KV, Anjum DH, Rodionov VO (2015) ACS Catal 5:2529

    Article  CAS  Google Scholar 

  11. Korstanje TJ, van der Vlugt JI, Elsevier CJ, de Bruin B (2015) Science 350:298

    Article  CAS  PubMed  Google Scholar 

  12. Chen X, Wang Z, Daly H, Morgan R, Manyar H, Byrne C, Walton AS, Taylor SFR, Smith M, Burch R, Hu P, Hardacre C (2020) Appl Catal A Gen 593:117420

    Article  CAS  Google Scholar 

  13. Lian WJ, Chen B, Xu BY, Zhang S, Wan Z, Zhao D, Zhang N, Chen C (2019) Ind Eng Chem Res 58:2846

    Article  CAS  Google Scholar 

  14. Zhang HL, Gao XJ, Ma YY, Han X, Niu LB, Bai GY (2017) Catal Sci Technol 7:5993

    Article  CAS  Google Scholar 

  15. Bai G, Wen X, Zhao Z, Li F, Dong H, Qiu M (2013) Ind Eng Chem Res 52:2266

    Article  CAS  Google Scholar 

  16. Bai G, Zhao Z, Dong H, Niu L, Wang Y, Chen Q (2014) ChemCatChem 6:655

    Article  CAS  Google Scholar 

  17. Guo Z, Hu L, Yu H-h, Cao X, Gu H (2012) RSC Adv 2:3477

    Article  CAS  Google Scholar 

  18. Ren XM, Guo M, Li H, Li CB, Yu L, Liu J, Yang QH (2019) Angew Chem Int Ed 58:14483

    Article  CAS  Google Scholar 

  19. Hu Y, Chen W, Wu Q, Xie X, Song W (2019) NANO 14:1950008

    Article  CAS  Google Scholar 

  20. Chaudhari C, Imatome H, Nishida Y, Sato K, Nagaoka K (2019) Catal Commun 126:55

    Article  CAS  Google Scholar 

  21. Tang MH, Mao SJ, Li XF, Chen CH, Li MM, Wang Y (2017) Green Chem 19:1766

    Article  CAS  Google Scholar 

  22. Li M, Tang M, Deng J, Wang Y (2016) Nano Res 9:3129

    Article  CAS  Google Scholar 

  23. Guo M, Kong X, Li C, Yang Q (2021) Commun Chem 4:54

    Article  CAS  Google Scholar 

  24. Ibrahim M, Poreddy R, Philippot K, Riisager A, Garcia-Suarez EJ (2016) Dalton Trans 45:19368

    Article  CAS  PubMed  Google Scholar 

  25. Karim W, Spreafico C, Kleibert A, Gobrecht J, VandeVondele J, Ekinci Y, van Bokhoven JA (2017) Nature 541:68

    Article  CAS  PubMed  Google Scholar 

  26. Tan Q, Shi Z, Wu D (2019) Int J Energ Res 43:5392

    Article  CAS  Google Scholar 

  27. Kang SM, Miao RR, Guo JF, Fu JX (2021) Catal Today 374:61

    Article  CAS  Google Scholar 

  28. Li X, Wang T, Zheng Z, Yang Q, Li C, Li B (2021) Appl Catal B Environ 296:120381

    Article  CAS  Google Scholar 

  29. Hu Y, Chen W, Ba M, Song W (2019) Catal Lett 149:180

    Article  CAS  Google Scholar 

  30. Gu Q, Zhu K, Sun Q, Liu J, Wang J, Qiu J, Wang J (2016) Phys Chem Chem Phys 18:33171

    Article  CAS  PubMed  Google Scholar 

  31. Prins R (2012) Chem Rev 112:2714

    Article  CAS  PubMed  Google Scholar 

  32. Kinoshita A, Nakanishi K, Yagi R, Tanaka A, Hashimoto K, Kominami H (2019) Appl Catal A: Gen 578:83

    Article  CAS  Google Scholar 

  33. Zhang HW, Han A, Okumura K, Zhong LX, Li SZ, Jaenicke S, Chuah GK (2018) J Catal 364:354

    Article  CAS  Google Scholar 

  34. Wan J, Lin JS, Guo XL, Wang T, Zhou RX (2019) Chem Eng J 368:719

    Article  CAS  Google Scholar 

  35. Martinez JJ, Aguilera EX, Cubillos J, Rojas H, Gomez-Cortes A, Diaz G (2019) Mol Catal 465:54

    Article  CAS  Google Scholar 

  36. Shao M, Ning F, Zhao J, Wei M, Evans DG, Duan X (2012) J Am Chem Soc 134:1071

    Article  CAS  PubMed  Google Scholar 

  37. Wen X, Cao Y, Qiao X, Niu L, Huo L, Bai G (2015) Catal Sci Technol 5:3281

    Article  CAS  Google Scholar 

  38. Liu Q, Chai Y, Zhang L, Ren J, Dai W-L (2017) Appl Catal B: Environ 205:505

    Article  CAS  Google Scholar 

  39. Zheng Z, Teo J, Chen X, Liu H, Yuan Y, Waclawik ER, Zhong Z, Zhu H (2010) Chem Eur J 16:1202

    Article  CAS  PubMed  Google Scholar 

  40. Bunin IZ, Chanturiya VA, Ryazantseva MV, Anashkina NE, Koporulina EV (2016) B Russ Acad Sci: Phys 80:645

    CAS  Google Scholar 

  41. Chen D, Niu F, Qin LS, Wang S, Zhang N, Huang YX (2017) Sol Energy Mater Sol Cells 171:24

    Article  CAS  Google Scholar 

  42. Noboru Y, Yasutake T, Tetsuro S (1981) Chem Lett 10:1767

    Article  Google Scholar 

  43. Weng-Sieh Z, Gronsky R, Bell AT (1997) J Catal 170:62

    Article  CAS  Google Scholar 

  44. Cao Y, Ran R, Wu X, Zhao B, Weng D (2017) J Environ Sci 52:197

    Article  CAS  Google Scholar 

  45. Kibis LS, Svintsitskiy DA, Derevyannikova EA, Kardash TY, Slavinskaya EM, Stonkus OA, Svetlichnyi VA, Boronin AI (2019) Appl Surf Sci 493:1055

    Article  CAS  Google Scholar 

  46. Lin LL, Wang K, Yang K, Chen X, Fu XZ, Dai WX (2017) Appl Catal B: Environ 204:440

    Article  CAS  Google Scholar 

  47. Raja S, Ramesh Babu R, Ramamurthi K, Sethuraman K (2018) Mater Chem Phys 213:130

    Article  CAS  Google Scholar 

  48. Yang F, Zhang Q, Zhang L, Cao M, Liu Q, Dai W-L (2019) Appl Catal B Environ 257:117901

    Article  CAS  Google Scholar 

  49. Phaahlamohlaka TN, Kumi DO, Dlamini MW, Forbes R, Jewell LL, Billing DG, Coville NJ (2017) ACS Catal 7:1568

    Article  CAS  Google Scholar 

  50. Camposeco R, Castillo S, Hinojosa-Reyes M, Zanella R, Lopez-Curiel JC, Fuentes GA, Mejia-Centeno I (2019) Catal Lett 149:1565

    Article  CAS  Google Scholar 

  51. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy. Eden Prairie, Minnesota, USA, Physical Electronics, Inc

Download references

Acknowledgements

The authors gratefully acknowledge financial supports for this research from the National Natural Science Foundation of China (22062009, 21862008), the Jiangxi Provincial Natural Science Foundation (20202ACB203003, 20202BABL204028, 20204BCJ23008), the Science and Technology Program of Jiangxi Academy of Sciences (2020-YZD-22, 2020-JCQN-01, 2020-YZD-3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Chen or Jianping Fu.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5184 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Chen, W., Chen, Y. et al. Highly Effective Rh/NaNbO3 Catalyst for the Selective Hydrogenation of Benzoic Acid to Cyclohexane Carboxylic Acid Under Mild Conditions. Catal Lett 152, 2164–2177 (2022). https://doi.org/10.1007/s10562-021-03801-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03801-7

Keywords

Navigation