Skip to main content
Log in

Montmorillonite K30 Supported Tungstophosphoric Acid as an Efficient Catalyst for Condensation Reaction of Methyl N-phenylcarbamate for Generating Diurethane

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Methylene diphenyl-4,4′-dicarbamate (MDC) was prepared via condensation reaction of methyl N-phenyl carbamate (MPC) and formaldehyde (HCHO) over montmorillonite K30 supported tungstophosphoric acid (TPA/K30) as an effective catalyst. A 26.2 wt.% TPA/K30 exhibited the highest product yield (75.5%) under a mild reaction temperature of 90 °C for 4 h at the molar ratio of MPC/HCHO = 4. Pyridine FTIR study indicates that Brønsted and Lewis acid sites in the TPA/K30 were found to be beneficial for achieving an excellent yield of MDC. Furthermore, the TPA/K30 could be reused at least four runs without significant loss in the original activity.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li F, Min R, Li J, Gao L, Xue W, Wang Y, Zhao X (2014) Ind Eng Chem Res 53:5406–5412

    Article  CAS  Google Scholar 

  2. Zhao X, Hu L, Geng Y, Wang Y (2007) J Mol Catal A Chem 276:168–173

    Article  CAS  Google Scholar 

  3. Sáenz Pérez M, Lizundia E, Laza JM, García Barrasa J, Vilas JL, León LM (2016) RSC Adv 6:69094–69102

    Article  CAS  Google Scholar 

  4. Kreye O, Mutlu H, Meier M (2013) Green Chem 15:1431–55

    Article  CAS  Google Scholar 

  5. Akindoyo JO, Beg MDH, Ghazali S, Islam MR, Jeyaratnam N, Yuvaraj AR (2016) RSC Adv 6:114453–114482

    Article  CAS  Google Scholar 

  6. Tafesh AM, Weiguny J (1996) Chem Rev 96:2035–2052

    Article  CAS  PubMed  Google Scholar 

  7. Yixia PHL, Haitao L, Qinhua Z, Yi Z (2009) Catal Today 148:373–377

    Article  CAS  Google Scholar 

  8. Tran AV, Nguyen TT, Lee HJ, Bae SW, Baek J, Kim HS, Kim YJ (2019) Appl Catal A 587:117245

    Article  CAS  Google Scholar 

  9. Tran AV, Huynh Nguyen TT, Nguyen TT, Lee HJ, Baek J, Kim YJ (2020) Catalysts 10:1228

    Article  CAS  Google Scholar 

  10. Kim HS, Kim YJ, Bae JY, Kim SJ, Lah MS, Chin CS (2003) Organometallics 22:2498–2504

    Article  CAS  Google Scholar 

  11. Kim HS, Kim YJ, Lee H, Park KY, Lee C, Chin CS (2002) Angew Chem Int Ed 41:4300–4303

    Article  CAS  Google Scholar 

  12. Ragaini F (2009). Dalton Trans. https://doi.org/10.1039/b902425p

    Article  PubMed  Google Scholar 

  13. Ferretti F, Gallo E, Ragaini F (2015) ChemCatChem 7:2241–2247

    Article  CAS  Google Scholar 

  14. Kang M, Zhou H, Tang D, Chen X, Guo Y, Zhao N (2019) RSC Adv 9:42474–42480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baba T, Kobayashi A, Kawanami Y, Inazu K, Ishikawa A, Echizenn T, Murai K, Aso S, Inomata M (2005) Green Chem 7:159–165

    Article  CAS  Google Scholar 

  16. Rojas Buzo S, García García P, Corma A (2019) Catal Sci Technol 9:146–156

    Article  CAS  Google Scholar 

  17. Zhang Q, Yuan HY, Fukaya N, Yasuda H, Choi JC (2017) Green Chem 19:5614–5624

    Article  CAS  Google Scholar 

  18. Kim HS, Kim YJ, Lee H, Park KY, Chin CS (1998) J Catal 176:264–266

    Article  CAS  Google Scholar 

  19. Kim HS, Kim YJ, Lee H, Lee SD, Chin CS (1999) J Catal 184:526–534

    Article  CAS  Google Scholar 

  20. Nguyen TT, Tran AV, Lee HJ, Baek J, Kim YJ (2019) Tetrahedron Lett 60:151310

    Article  CAS  Google Scholar 

  21. Liu A-H, Li Y-N, He L-N (2012) Pure Appl Chem 84:581–602

    Article  CAS  Google Scholar 

  22. Fukuoka S, Tojo M, Hachiya H, Aminaka M, Hasegawa K (2007) Polym J 39:91–114

    Article  CAS  Google Scholar 

  23. Truong CC, Tran AV, Nguyen TT, Baek J, Kim YJ (2020) Adv Sustain Syst 4:2000186

    Article  CAS  Google Scholar 

  24. Lee CW, Lee SM, Park TK, Park KH, Lee JS (1990) Appl Catal 66:11–23

    Article  CAS  Google Scholar 

  25. Yixia PHL, Haitao L, Qinhua Z, Yi Z (2010) Chem Res Chin Univ 26:550–553

    Google Scholar 

  26. Yanlou G, Liyan H, Xinqiang Z, Hualiang A, Yanji W (2009) Chin J Chem Eng 17:756–60

    Article  Google Scholar 

  27. Wang H, Wang G, He G, Tian H (2009) Fine Chem 26:408–11

    CAS  Google Scholar 

  28. Guo X, Qin Z, Fan W, Wang G, Zhao R, Peng S, Wang J (2009) Catal Lett 128:405–412

    Article  CAS  Google Scholar 

  29. Wang F, Chen T, Ma F, Yao J, Wang G (2006) Petrochem Technol 35:260–263

    CAS  Google Scholar 

  30. Liu L, Li F, Wang Y, Zhao X (2007) Chin J Catal 28:667–669

    Article  CAS  Google Scholar 

  31. Li F, Miao J, Wang Y, Zhao X (2006) Ind Eng Chem Res 45:4892–4897

    Article  CAS  Google Scholar 

  32. Zhao X, Kang L, Wang N, An H, Li F, Wang Y (2012) Ind Eng Chem Res 51:11335–11340

    Article  CAS  Google Scholar 

  33. Li F, Li W, Li J, Xue W, Wang Y, Xinqiang Z (2014) Appl Catal A 475:355–362

    Article  CAS  Google Scholar 

  34. Śliwa M, Samson K, Ruggiero Mikołajczyk M, Żelazny A, Grabowski R (2014) Catal Lett 144:1884–1893

    Article  CAS  Google Scholar 

  35. Bhorodwaj SK, Dutta DK (2011) Appl Clay Sci 53:347–352

    Article  CAS  Google Scholar 

  36. Bokade VV, Yadav GD (2011) Appl Clay Sci 53:263–271

    Article  CAS  Google Scholar 

  37. Shah AK, Park S, Khan HA, Bhatti UH, Kumar P, Bhutto AW, Park YH (2018) Res Chem Intermed 44:2405–2423

    Article  CAS  Google Scholar 

  38. Yadav GD, Kirthivasan N (1997) Appl Catal A 154:29–53

    Article  CAS  Google Scholar 

  39. Venkatesha NJ, Bhat YS, Prakash BSJ (2016) RSC Adv 6:45819–45828

    Article  CAS  Google Scholar 

  40. Marakatti VS, Shanbhag GV, Halgeri AB (2013) Appl Catal A 451:71–78

    Article  CAS  Google Scholar 

  41. Maronna MM, Kruissink EC, Parton RF, Soulimani F, Weckhuysen BM, Hoelderich WF (2016) Phys Chem Chem Phys 18:22636–22646

    Article  CAS  PubMed  Google Scholar 

  42. Takagaki A, Jung JC, Hayashi S (2014) RSC Adv 4:43785–43791

    Article  CAS  Google Scholar 

  43. Jeon JK, Lee H, Yim JH, Kim YS, Lee SJ, Park YK, Shon JK, Kim JM (2007) Catal Lett 119:179–184

    Article  CAS  Google Scholar 

  44. Velthoen MEZ, Nab S, Weckhuysen BM (2018) Phys Chem Chem Phys 20:21647–21659

    Article  CAS  PubMed  Google Scholar 

  45. Zatta L, Ramos LP, Wypych F (2012) J Oleo Sci 61:497–504

    Article  CAS  PubMed  Google Scholar 

  46. Nadji L, Massó A, Delgado D, Issaadi R, Rodriguez-Aguado E, Rodriguez-Castellón E, Nieto JML (2018) RSC Adv 8:13344–13352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study has been conducted with the support of the Korea Institute of Industrial Technology as “Development of eco-friendly production system technology for total periodic resource cycle (KITECH EO-20-0022)”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jayeon Baek or Yong Jin Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1298 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, A.V., Lee, H.J., Baik, J.H. et al. Montmorillonite K30 Supported Tungstophosphoric Acid as an Efficient Catalyst for Condensation Reaction of Methyl N-phenylcarbamate for Generating Diurethane. Catal Lett 152, 2206–2214 (2022). https://doi.org/10.1007/s10562-021-03793-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03793-4

Keywords

Navigation