Skip to main content
Log in

Glucopyranoside-Functionalized NHCs-Pd(II)-PEPPSI Complexes: Anomeric Isomerism Controlled and Catalytic Activity in Aqueous Suzuki Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The first system controlled anomeric isomerism of glucopyranoside-functionalized N-heterocyclic carbenes based pyridine enhanced precatalyst preparation, stabilization and initiation type palladium(II) complexes (Glu-NHCs-Pd(II)-PEPPSI, 2a–d) were prepared and fully characterized. It is interesting to note that pure β–anomer PEPPSI complex 2d was obtained, in which the Glu-substituent connects to the imidazole heterocycle ring N through ethoxy bridged anomeric carbon. In addition, the catalytic activities revealed that Glu-NHCs-Pd(II)-PEPPSI complexes 2a-d are efficient catalysts for the aqueous Suzuki reaction. Under optimized conditions, a series of fluorene-cored functional materials with different aryl-substituents were synthesized through the Suzuki reaction with excellent yields. The Glu-NHCs-Pd(II)-PEPPSI complex containing bulky and rigid 2,5-dimethylphenyl group played an important role in maintaining the β conformation and improving the catalytic activity significantly.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Code Availability

CCDC Deposition Number 2069632 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK.

References

  1. Zhao Q, Meng G, Nolan SP, Szostak M (2020) N-heterocyclic carbene complexes in C–H activation reactions. Chem Rev 120(4):1981–2048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sau SC, Hota PK, Mandal SK, Soleilhavoup M, Bertrand G (2020) Stable abnormal N-heterocyclic carbenes and their applications. Chem Soc Rev 49(4):1233–1252

    Article  CAS  PubMed  Google Scholar 

  3. Reshi NUD, Bera JK (2020) Recent advances in annellated NHCs and their metal complexes. Coord Chem Rev 422:213334

    Article  CAS  Google Scholar 

  4. Smith CA, Narouz MR, Lummis PA, Singh I, Nazemi A, Li C-H, Crudden CM (2019) N-heterocyclic carbenes in materials chemistry. Chem Rev 119(8):4986–5056

    Article  CAS  PubMed  Google Scholar 

  5. Ji W, Wu H-H, Zhang J (2020) Axially chiral biaryl monophosphine oxides enabled by palladium/WJ-phos-catalyzed asymmetric Suzuki-Miyaura cross-coupling. ACS Catal 10(2):1548–1554

    Article  CAS  Google Scholar 

  6. Hong K, Sajjadi M, Suh JM, Zhang K, Nasrollahzadeh M, Jang HW, Varma RS, Shokouhimehr M (2020) Palladium nanoparticles on assorted nanostructured supports: applications for Suzuki, heck, and sonogashira cross-coupling reactions. ACS Applied Nano Materials 3(3):2070–2103

    Article  CAS  Google Scholar 

  7. Trzeciak AM, Augustyniak AW (2019) The role of palladium nanoparticles in catalytic C–C cross-coupling reactions. Coord Chem Rev 384:1–20

    Article  CAS  Google Scholar 

  8. Kantchev EAB, O’Brien CJ, Organ MG (2007) Palladium complexes of N-heterocyclic carbenes as catalysts for cross-coupling reactions—a synthetic chemist’s perspective. Angew Chem Int Ed 46(16):2768–2813

    Article  CAS  Google Scholar 

  9. Beletskaya IP, Alonso F, Tyurin V (2019) The Suzuki-Miyaura reaction after the Nobel prize. Coord Chem Rev 385:137–173

    Article  CAS  Google Scholar 

  10. Zhang D, Wang Q (2015) Palladium catalyzed asymmetric Suzuki-Miyaura coupling reactions to axially chiral biaryl compounds: Chiral ligands and recent advances. Coord Chem Rev 286:1–16

    Article  CAS  Google Scholar 

  11. Suzuki A (2011) Cross-coupling reactions of organoboranes: an easy way to construct C–C bonds. Angew Chem Int Ed 50(30):6722–6737

    Article  CAS  Google Scholar 

  12. Negishi E-I (2011) magical power of transition metals: past, present, and future (Nobel Lecture). Angew Chem Int Ed 50(30):6738–6764

    Article  CAS  Google Scholar 

  13. Heck RF (1968) Acylation, methylation, and carboxyalkylation of olefins by Group VIII metal derivatives. J Am Chem Soc 90(20):5518–5526

    Article  CAS  Google Scholar 

  14. Sun B, Ning L, Zeng HC (2020) Confirmation of Suzuki-Miyaura cross-coupling reaction mechanism through synthetic architecture of nanocatalysts. J Am Chem Soc 142(32):13823–13832

    Article  CAS  PubMed  Google Scholar 

  15. Han B, Wang H, Wang C, Wu H, Zhou W, Chen B, Jiang J (2019) Postsynthetic metalation of a robust hydrogen-bonded organic framework for heterogeneous catalysis. J Am Chem Soc 141(22):8737–8740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. R. F. Service (2013) Turning up the light. Science 342(6160):794–797

    Article  Google Scholar 

  17. R. F. Service (2014) Perovskite solar cells keep on surging. Science 344(6183):458–458

    Article  Google Scholar 

  18. Bach U (2015) Perovskite solar cells: brighter pieces of the puzzle. Nat Chem 7(8):616–617

    Article  CAS  PubMed  Google Scholar 

  19. Polman A, Knight M, Garnett EC, Ehrler B, Sinke WC (2016) Photovoltaic materials: present efficiencies and future challenges. Science 352(6283):aad4424–aad4424

    Article  PubMed  Google Scholar 

  20. Zhang J, Sun Q, Chen QY, Wang YK, Zhou Y, Song B, Yuan NY, Ding JN, Li YF (2019) High efficiency planar p-i-n perovskite solar cells using low-cost fluorene-based hole transporting material. Adv Funct Mater 29(22):1900484

    Article  Google Scholar 

  21. Lee D, Sivakumar G, Manju, Misra R, Seok S II (2020) Carbazole-based spiro fluorene-xanthene as an efficient hole-transporting material for perovskite solar cells. ACS Appl Mater Interfaces 12(25):28246–28252

    Article  CAS  PubMed  Google Scholar 

  22. You G, Zhuang Q, Wang L, Lin X, Zou D, Lin Z, Zhen H, Zhuang W, Ling Q (2020) Dopant-free, donor–acceptor-type polymeric hole-transporting materials for the perovskite solar cells with power conversion efficiencies over 20%. Adv Energy Mater 10(5):1903146

    Article  CAS  Google Scholar 

  23. Yin X, Guan L, Yu J, Zhao D, Wang C, Shrestha N, Han Y, An Q, Zhou J, Zhou B, Yu Y, Grice CR, Awni RA, Zhang F, Wang J, Ellingson RJ, Yan Y, Tang W (2017) One-step facile synthesis of a simple carbazole-cored hole transport material for high-performance perovskite solar cells. Nano Energy 40:163–169

    Article  CAS  Google Scholar 

  24. Rakstys K, Saliba M, Gao P, Gratia P, Kamarauskas E, Paek S, Jankauskas V, Nazeeruddin MK (2016) Highly efficient perovskite solar cells employing an easily attainable bifluorenylidene-based hole-transporting material. Angew Chem Int Ed 55(26):7464–7468

    Article  CAS  Google Scholar 

  25. Nishimura H, Ishida N, Shimazaki A, Wakamiya A, Saeki A, Scott LT, Murata Y (2015) Hole-hransporting materials with a two-dimensionally expanded π-system around an azulene core for efficient perovskite solar cells. J Am Chem Soc 137(50):15656–15659

    Article  CAS  PubMed  Google Scholar 

  26. Zhong R, Lindhorst AC, Groche FJ, Kühn FE (2017) Immobilization of N-heterocyclic carbene compounds: a synthetic perspective. Chem Rev 117(3):1970–2058

    Article  CAS  PubMed  Google Scholar 

  27. Crudden CM, Allen DP (2004) Stability and reactivity of N-heterocyclic carbene complexes. Coord Chem Rev 248(21):2247–2273

    Article  CAS  Google Scholar 

  28. Jacobsen H, Correa A, Poater A, Costabile C, Cavallo L (2009) Understanding the M(NHC) (NHC=N-heterocyclic carbene) bond. Coord Chem Rev 253(5):687–703

    Article  CAS  Google Scholar 

  29. Hazari N, Hruszkewycz DP (2016) Dinuclear PdI complexes with bridging allyl and related ligands. Chem Soc Rev 45(10):2871–2899

    Article  CAS  PubMed  Google Scholar 

  30. Correa A, Nolan SP, Cavallo L (2011) N-heterocyclic carbene complexes of Au, Pd, and Pt as effective catalysts in organic synthesis. Top Curr Chem 302:131–155

    Article  CAS  PubMed  Google Scholar 

  31. Poater A, Ragone F, Giudice S, Costabile C, Dorta R, Nolan SP, Cavallo L (2008) Thermodynamics of N-heterocyclic carbene dimerization: the balance of sterics and electronics. Organometallics 27(12):2679–2681

    Article  CAS  Google Scholar 

  32. Poater A, Cavallo L (2015) A comprehensive study of olefin metathesis catalyzed by Ru-based catalysts. Beilstein J Org Chem 11:1767–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li G, Lei P, Szostak M, Casals-Cruañas E, Poater A, Cavallo L, Nolan SP (2018) Mechanistic study of Suzuki-Miyaura cross-coupling reactions of amides mediated by [Pd(NHC)(allyl)Cl] precatalysts. ChemCatChem 10(14):3096–3106

    Article  CAS  Google Scholar 

  34. Zhou T, Ma S, Nahra F, Obled AMC, Poater A, Cavallo L, Cazin CSJ, Nolan SP, Szostak M (2020) [Pd(NHC)(mu-Cl)Cl]2: versatile and highly reactive complexes for cross-coupling reactions that avoid formation of inactive Pd(I) Off-cycle products. iScience 23(8):101377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shen D, Xu Y, Shi S-L (2019) A bulky chiral N-heterocyclic carbene palladium catalyst enables highly enantioselective Suzuki-Miyaura cross-coupling reactions for the synthesis of biaryl atropisomers. J Am Chem Soc 141(37):14938–14945

    Article  CAS  PubMed  Google Scholar 

  36. Diesel J, Grosheva D, Kodama S, Cramer N (2019) A bulky chiral N-heterocyclic carbene nickel catalyst enables enantioselective C–H functionalizations of indoles and pyrroles. Angew Chem Int Ed 58(32):11044–11048

    Article  CAS  Google Scholar 

  37. Rendon-Nava D, Alvarez-Hernandez A, Rheingold AL, Suarez-Castillo OR, Mendoza-Espinosa D (2019) Hydroxyl-functionalized triazolylidene-based PEPPSI complexes: metallacycle formation effect on the Suzuki coupling reaction. Dalton Trans 48(10):3214–3222

    Article  CAS  PubMed  Google Scholar 

  38. Zhang YY, Han FW, Zhang MY, Zhang HX, Li Y, Wang R, Zeng YF, Liu GY (2020) Highly active Pd-PEPPSI complexes for Suzuki-Miyaura cross-coupling of aryl chlorides: an investigation on the effect of electronic properties. Chem Res Chinese U 36(5):859–864

    Article  CAS  Google Scholar 

  39. Ouyang J-S, Li Y-F, Huang F-D, Lu D-D, Liu F-S (2018) The Highly efficient Suzuki-Miyaura cross-coupling of (Hetero)aryl chlorides and (Hetero)arylboronic acids catalyzed by “Bulky-yet-Flexible” palladium-PEPPSI complexes in air. ChemCatChem 10(2):371–375

    Article  CAS  Google Scholar 

  40. Aktas A, Celepci DB, Gok Y, Aygun M (2018) 2-Hydroxyethyl-substituted Pd-PEPPSI complexes: synthesis, characterization and the catalytic activity in the Suzuki-Miyaura reaction for aryl chlorides in aqueous media. ChemistrySelect 3(35):9974–9980

    Article  CAS  Google Scholar 

  41. Mika LT, Cséfalvay E, Németh Á (2018) Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability. Chem Rev 118(2):505–613

    Article  CAS  PubMed  Google Scholar 

  42. Kaur N, Singh A, Chopra HK (2018) Exploring low-cost natural precursors as chiral building blocks in synthesis: chiral carbohydrate-ionic liquids. Mini-Rev Org Chem 15(3):208–219

    Article  CAS  Google Scholar 

  43. Zhang X, Lin L, Huang H, Linhardt RJ (2020) Chemoenzymatic synthesis of glycosaminoglycans. Acc Chem Res 53(2):335–346

    Article  CAS  PubMed  Google Scholar 

  44. Shi JC, Lei N, Tong QS, Peng YR, Wei JF, Jia L (2007) Synthesis of chiral imidazolinium carbene from a carbohydrate and its Rhodium(I) complex. Eur J Inorg Chem 2007(15):2221–2224

    Article  Google Scholar 

  45. Tewes F, Schlecker A, Harms K, Glorius F (2007) Carbohydrate-containing N-heterocyclic carbene complexes. J Organomet Chem 692(21):4593–4602

    Article  CAS  Google Scholar 

  46. Nishioka T, Shibata T, Kinoshita I (2007) Sugar-incorporated N-heterocyclic carbene complexes. Organometallics 26(5):1126–1128

    Article  CAS  Google Scholar 

  47. Keitz BK, Grubbs RH (2010) Ruthenium olefin metathesis catalysts bearing carbohydrate-based N-heterocyclic carbenes. Organometallics 29(2):403–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang CC, Lin PS, Liu FC, Lin IJB, Lee GH, Peng SM (2010) Glucopyranoside-incorporated N-heterocyclic carbene complexes of silver(I) and palladium(II): efficient water-soluble Suzuki−Miyaura coupling palladium(II) catalysts. Organometallics 29(22):5959–5971

    Article  CAS  Google Scholar 

  49. Shibata T, Hashimoto H, Kinoshita I, Yano S, Nishioka T (2011) Unprecedented diastereoselective generation of chiral-at-metal, half sandwich Ir(III) and Rh(III) complexes via anomeric isomerism on “sugar-coated” N-heterocyclic carbene ligands. Dalton Trans 40(18):4826–4829

    Article  CAS  PubMed  Google Scholar 

  50. Shibata T, Ito S, Doe M, Tanaka R, Hashimoto H, Kinoshita I, Yano S, Nishioka T (2011) Dynamic behaviour attributed to chiral carbohydrate substituents of N-heterocyclic carbene ligands in square planar nickel complexes. Dalton Trans 40(25):6778–6784

    Article  CAS  PubMed  Google Scholar 

  51. Annunziata A, Amoresano A, Cucciolito ME, Esposito R, Ferraro G, Iacobucci I, Imbimbo P, Lucignano R, Melchiorre M, Monti M, Scognamiglio C, Tuzi A, Monti DM, Merlino A, Ruffo F (2020) Pt(II) versus Pt(IV) in carbene glycoconjugate antitumor agents: minimal structural variations and great performance changes. Inorg Chem 59(6):4002–4014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cucciolito ME, Trinchillo M, Iannitti R, Palumbo R, Tesauro D, Tuzi A, Ruffo F, D’Amora A (2017) Sugar-incorporated N-heterocyclic-carbene-containing gold(I) complexes: synthesis, characterization, and cytotoxic evaluation. Eur J Inorg Chem 2017(42):4955–4961

    Article  CAS  Google Scholar 

  53. Dieguez M, Pamies O, Ruiz A, Diaz Y, Castillon S, Claver C (2004) Carbohydrate derivative ligands in asymmetric catalysis. Coord Chem Rev 248(21–24):2165–2192

    Article  CAS  Google Scholar 

  54. Dieguez M, Pamies O, Claver C (2004) Ligands derived from carbohydrates for asymmetric catalysis. Chem Rev 104(6):3189–3216

    Article  CAS  PubMed  Google Scholar 

  55. Dieguez M, Claver C, Pamies O (2007) Recent progress in asymmetric catalysis using chiral carbohydrate-based ligands. Eur J Org Chem 28:4621–4634

    Article  Google Scholar 

  56. Woodward S, Diéguez M, Pàmies O (2010) Use of sugar-based ligands in selective catalysis: recent developments. Coord Chem Rev 254(17–18):2007–2030

    Article  CAS  Google Scholar 

  57. Zhao W, Ferro V, Baker MV (2017) Carbohydrate–N-heterocyclic carbene metal complexes: synthesis, catalysis and biological studies. Coord Chem Rev 339:1–16

    Article  CAS  Google Scholar 

  58. Shi J-C, Zhou Z-G, Zheng S, Zhang Q, Jia L, Lin J (2014) Carbohydrate-based phosphines as supporting ligand for palladium-catalyzed Suzuki-Miyaura cross-coupling reaction. Tetrahedron Lett 55(18):2904–2907

    Article  CAS  Google Scholar 

  59. Zhou Z, Zhao Y, Zhen H, Lin Z, Ling Q (2016) Poly(ethylene glycol)- and glucopyranoside-substituted N-heterocyclic carbene precursors for the synthesis of arylfluorene derivatives using efficient palladium-catalyzed aqueous Suzuki reaction. Appl Organomet Chem 30(11):924–931

    Article  CAS  Google Scholar 

  60. Zhou Z-G, Yuan Y, Xie Y, Li M (2018) Green, efficient and reusable bis(imidazolium) ionic liquids promoted Pd-catalyzed aqueous Suzuki reaction for organic functional materials. Catal Lett 148(9):2696–2702

    Article  CAS  Google Scholar 

  61. Zhou Z-G, Li M, Liu GS, Xu GH, Xue J (2019) Ultra-small sugar-substituted N-heterocyclic carbenes protected Pd nanoparticles and catalytic activity. Appl Organomet Chem 33(7):e4942

    Article  Google Scholar 

  62. Zhou Zhonggao, Xie Qian, Zhou Xin, Yuan Yangyang, Pan Yan, Dongliang Lu, Ziyi Du, Xue J (2020) Synthesis of glucoside-based imidazolium salts for Pd-catalyzed cross-coupling reaction in water. Carbohydr Res 496:108079

    Article  CAS  PubMed  Google Scholar 

  63. Salman AA, Tabandeh M, Heidelberg T, Hussen RSD, Ali HM (2015) Alkyl-imidazolium glycosides: non-ionic—cationic hybrid surfactants from renewable resources. Carbohydr Res 412:28–33

    Article  CAS  PubMed  Google Scholar 

  64. Amoroso F, Colussi S, Del Zotto A, Llorca J, Trovarelli A (2010) An efficient and reusable catalyst based on Pd/CeO2 for the room temperature aerobic Suzuki-Miyaura reaction in water/ethanol. J Mol Catal A 315(2):197–204

    Article  CAS  Google Scholar 

  65. Imanaka Y, Hashimoto H, Kinoshita I, Nishioka T (2014) Incorporation of a sugar unit into a C-C–N pincer Pd complex using click chemistry and Its dynamic behavior in solution and catalytic ability toward the Suzuki-Miyaura coupling in water. Chem Lett 43(5):687–689

    Article  CAS  Google Scholar 

  66. Imanaka Y, Hashimoto H, Nishioka T (2015) Syntheses and catalytic ability of sugar-incorporated N-heterocyclic carbene pincer Pd complexes possessing various N-substituents. Bull Chem Soc Jpn 88:1135–1143

    Article  CAS  Google Scholar 

  67. Imanaka Y, Shiomoto N, Tamaki M, Maeda Y, Nakajima H, Nishioka T (2017) The arrangement of two N-heterocyclic carbene moieties in palladium pincer complexes affects their catalytic activity towards Suzuki-Miyaura cross-coupling reactions in water. Bull Chem Soc Jpn 90(1):59–67

    Article  CAS  Google Scholar 

  68. Imanaka Y, Nakao K, Maeda Y, Nishioka T (2017) Sugar-incorporated chelating bis-N-heterocyclic carbene palladium complexes. Synthesis, structures, and catalytic ability for Suzuki-Miyaura cross-coupling reactions in water. Bull Chem Soc Jpn 90(9):1050–1057

    Article  CAS  Google Scholar 

  69. Xu B, Sheibani E, Liu P, Zhang J, Tian H, Vlachopoulos N, Boschloo G, Kloo L, Hagfeldt A, Sun L (2014) Carbazole-based hole-transport materials for efficient solid-state dye-sensitized solar cells and perovskite solar cells. Adv Mater 26(38):6629–6634

    Article  CAS  PubMed  Google Scholar 

  70. Zhou Z-G, Zhao Y, Zhang C, Zhou D, Chen Y, Lin Z, Zhen H, Ling Q (2017) A facile one-pot synthesis of hyper-branched carbazole based polymer as hole-transporting material for perovskite solar cells. J Mater Chem A 5:6613–6621

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21562002), the Funding Project for Academic and Technical Leaders of Jiangxi Province (No. 20172BCB22021), Education Department of Jiangxi Province (No. GJJ201427, GJJ201424) and Graduate Innovation Fund of Gannan Normal University (No. YCX20A008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhonggao Zhou or Yongrong Xie.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1283 kb)

Supplementary file2 (CIF 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Xie, Q., Li, J. et al. Glucopyranoside-Functionalized NHCs-Pd(II)-PEPPSI Complexes: Anomeric Isomerism Controlled and Catalytic Activity in Aqueous Suzuki Reaction. Catal Lett 152, 838–847 (2022). https://doi.org/10.1007/s10562-021-03654-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03654-0

Keywords

Navigation