Skip to main content
Log in

Sulfurized Co-Mo Alloy Thin Films as Efficient Electrocatalysts for Hydrogen Evolution Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Here, we successfully fabricated sulfurized Co-Mo alloy thin film electrodes with different compositions and studied their catalytic properties for hydrogen evolution reaction (HER). The resulting alloy films surpass the HER activity of the MoS2 counterpart, whose electronic states and morphology are modified by the Co atoms, leading to enhanced HER activity. The best performing electrode at 23 at.% Co concentration exhibits a 272 mV lower overpotential than the MoS2 film at 10 mA cm−2 current density and a Tafel slope of 62 mV dec−1. Combined with the good stability, the sulfurized Co–Mo alloy thin films are promising catalysts for the electrocatalytic HER in acidic solution.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK (2005) J Am Chem Soc 127:5308–5309

    Article  CAS  Google Scholar 

  2. Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013) Nano Lett 13:6222–6227

    Article  CAS  Google Scholar 

  3. Zheng X, Xu J, Yan K, Wang H, Wang Z, Yang S (2014) Chem Mater 26:2344–2353

    Article  CAS  Google Scholar 

  4. Tang Q, Jiang D (2016) ACS Catal 6:4953–4961

    Article  CAS  Google Scholar 

  5. Wang H, Lu Z, Xu S, Kong D, Cha JJ, Zheng G, Hsu PC, Yan K, Bradshaw D, Prinz FB, Cui Y (2013) PNAS 110:19701–19706

    Article  CAS  Google Scholar 

  6. Zhang J, Wu J, Guo H, Chen W, Yuan J, Martinez U, Gupta G, Mohite A, Ajayan PM, Lou J (2017) Adv Mater 29:1701955

    Article  Google Scholar 

  7. Jaramillo TF, Jorgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Science 317:100–102

    Article  CAS  Google Scholar 

  8. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) J Am Chem Soc 133:7296–7299

    Article  CAS  Google Scholar 

  9. Wang H, Lu Z, Kong D, Sun J, Hymel TM, Cui Y (2014) ACS Nano 8:4940–4947

    Article  CAS  Google Scholar 

  10. Ye G, Gong Y, Lin J, Li B, He Y, Pantelides ST, Zhou W, Vajtai R, Ajayan PM (2016) Nano Lett 16:1097–1103

    Article  CAS  Google Scholar 

  11. Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou XW, Xie Y (2013) Adv Mater 25:5807–5813

    Article  CAS  Google Scholar 

  12. Wang Z, Li Q, Xu H, Dahl-Petersen C, Yang Q, Cheng D, Cao D, Besenbacher F, Lauritsen JV, Helveg S, Dong M (2018) Nano Energy 49:634–643

    Article  CAS  Google Scholar 

  13. Wang D, Wang Z, Wang C, Zhou P, Wu Z, Liu Z (2013) Electrochem Commun 34:219–222

    Article  Google Scholar 

  14. Geng X, Wu W, Li N, Sun W, Armstrong J, Al-hilo A, Brozak M, Cui J, Chen TP (2014) Adv Func Mater 24:6123–6129

    Article  CAS  Google Scholar 

  15. Zhao Y, Xie X, Zhang J, Liu H, Ahn HJ, Sun K, Wang G (2015) Eur J Chem 21:15908–15913

    Article  CAS  Google Scholar 

  16. Luo R, Luo M, Wang Z, Liu P, Song S, Wang X, Chen M (2019) Nanoscale 11:7123–7128

    Article  CAS  Google Scholar 

  17. Yoshimura A, Koratkar N, Meunier V (2020) Nano Express 1:010008

    Article  Google Scholar 

  18. Wang C (2019) Int J Electrochem Sci 14:9805–9814

    Article  CAS  Google Scholar 

  19. Wang Y, Sun W, Ling X, Shi X, Li L, Deng Y, An C, Han X (2019) Eur. J. Chem. 2019 04238.

  20. Xue J-Y, Li F-L, Zhao Z-Y, Li C, Ni CY, Gu HW, Young DJ, Lang JP (2019) Inorg Chem 58:11202–11209

    Article  CAS  Google Scholar 

  21. Li Q, Liu W, Xiao L, Chen X, Xu X (2021) Mater Lett 285:129196

    Article  CAS  Google Scholar 

  22. Kuru C, Alaf M, Simsek YE (2021) Catal. Lett.

  23. Dai X, Du K, Li Z, Liu M, Ma Y, Sun H, Zhang X, Yang Y (2015) ACS Appl Mater Interfaces 7:27242–27253

    Article  CAS  Google Scholar 

  24. Lin C, Gao Z, Jin J (2018) Chem Sus Chem 11:2114–2123

    Article  Google Scholar 

  25. Ambrosi A, Pumera M (2018) Eur J Chem 24:18551–18555

    Article  CAS  Google Scholar 

  26. Miao J, Xiao F-X, Yang HB, Khoo SY, Chen J, Fan Z, Hsu YY, Chen HM, Zhang H, Liu B (2015) Sci. Adv. 1:e1500259

    Article  Google Scholar 

  27. Li Y, Yin J, An L, Lu M, Sun K, Zhao YQ, Gao D, Cheng F, Xi P (2018) Small 14:1801070

    Article  Google Scholar 

  28. Chen L, Zhang Y, Wang H, Wang Y, Li D, Duan C (2018) Nanoscale 10:21019–21024

    Article  CAS  Google Scholar 

  29. Yang Y, Fei H, Ruan G, Xiang C, Tour JM (2014) Adv Mater 26:8163–8168

    Article  CAS  Google Scholar 

  30. Li H, Zhang Q, Yap CCR, Tay BK, Edwin TH, Olivier A, Baillargeat D (2012) Adv Func Mater 22:1385–1390

    Article  CAS  Google Scholar 

  31. Ryu M-Y, Jang H-K, Lee KJ, Piao M, Ko SP, Shin M, Huh J, Kim GT (2017) Phys Chem Chem Phys 19:13133–13139

    Article  CAS  Google Scholar 

  32. Sahoo S, Gaur AP, Ahmadi M, Guinel MJF, Katiyar RS (2013) J Phys Chem C 117:9042–9047

    Article  CAS  Google Scholar 

  33. Kong D, Wang H, Cha JJ, Pasta M, Koski KJ, Yao J, Cui Y (2013) Nano Lett 13:1341–1347

    Article  CAS  Google Scholar 

  34. Huang X, Zeng Z, Zhang H (2013) Chem Soc Rev 42:1934

    Article  CAS  Google Scholar 

  35. Ghosh S, Azad UP, Singh AK, Singh AK, Prakash R (2017) Chem Select 2:11590–11598

    CAS  Google Scholar 

  36. Kibsgaard J, Chen Z, Reinecke BN, Jaramillo TF (2012) Nat Mater 11:963–969

    Article  CAS  Google Scholar 

  37. Xu C, Peng S, Tan C, Ang H, Tan H, Zhang H, Yan Q (2014) J Mater Chem A 2:5597–5601

    Article  CAS  Google Scholar 

  38. Yu J, Cao Q, Feng B, Li C, Liu J, Clark JK, Delaunay JJ (2018) Nano Res 11:4323–4332

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The Scientific and Technological Research Council of Turkey (Grand No. 117M257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cihan Kuru.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1470 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuru, C., Alaf, M., Simsek, Y.E. et al. Sulfurized Co-Mo Alloy Thin Films as Efficient Electrocatalysts for Hydrogen Evolution Reaction. Catal Lett 152, 315–323 (2022). https://doi.org/10.1007/s10562-021-03639-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03639-z

Keywords

Navigation