Skip to main content
Log in

H2 Evolution Upon Hydrolysis of Ammonia-Borane Catalyzed by Porphyrin Stabilized Nanocatalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ammonia-borane (AB) is one of the most promising fuel forms for the hydrogen economy, but the reaction requires a good catalyst to accelerate this hydrolysis reaction under ambient conditions. Here, H2 evolution upon hydrolysis of ammonia-borane catalyzed by tetra-(p-hydroxyphenyl) porphyrin (THPP) stabilized transition metal nanoparticles (RhNPs/THPP, RuNPs/THPP, PtNPs/THPP) has been reported for the first time. The as-synthesized nanocomposites (TMNPs/THPP) show high catalytic activity in the AB hydrolysis. Among these TMNPs/THPP, the RhNP-3/THPP exhibits the best catalytic activity with a TOF of 213.64 molH2 molcata−1 min−1. In addition, tandem reaction for 1,1-diphenylethylene hydrogenation has also confirmed the H2 evolution upon hydrolysis of ammonia-borane.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li Z, Xu Q (2017) Metal-nanoparticle-catalyzed hydrogen generation from formic acid. Acc Chem Res 50:1449–1458

    Article  CAS  PubMed  Google Scholar 

  2. Chen W, Shen J, Huang Y, Liu X, Astruc D (2020) Catalyzed hydrolysis of tetrahydroxydiboron by graphene quantum dots-stabilized transition metal nanoparticles for hydrogen evolution. ACS Sustain Chem Eng 8:7513–7522

    Article  CAS  Google Scholar 

  3. Yang J, Sudik A, Wolverton C, Siegel D (2010) High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chem Soc Rev 39:656–675

    Article  CAS  PubMed  Google Scholar 

  4. Huang Y, Zheng K, Liu X, Meng X, Astruc D (2020) Optimization of Cu catalysts for nitrophenol reduction, click reaction and alkyne coupling. Inorg Chem Front 7:939–945

    Article  CAS  Google Scholar 

  5. Yu X, Tang Z, Sun D, Ouyang L, Zhu M (2017) Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications. Prog Mater Sci 88:1–48

    Article  Google Scholar 

  6. Chandra M, Xu Q (2006) A high-performance hydrogen generation system: transition metal-catalyzed dissociation and hydrolysis of ammonia-borane. J Power Sources 156:190–194

    Article  CAS  Google Scholar 

  7. She X, Wu J, Zhong J, Xu H, Yang Y, Vajtai R (2016) Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency. Nano Energy 27:138–146

    Article  CAS  Google Scholar 

  8. Khalily M, Eren H, Akbayrak S, Susapto H, Biyikli N, Özkar S (2016) Facile synthesis of three-dimensional Pt-TiO2 nano-networks: a highly active catalyst for the hydrolytic dehydrogenation of ammonia-borane. Angew Chem Int Ed 55:12257–12261

    Article  CAS  Google Scholar 

  9. Wang C, Wang Q, Fu F, Astruc D (2020) Hydrogen generation upon nanocatalyzed hydrolysis of hydrogen-rich boron derivatives: recent developments. Acc Chem Res 53:2483–2493

    Article  CAS  PubMed  Google Scholar 

  10. Zhu Q-L, Li J, Xu Q (2013) Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance. J Am Chem Soc 135:10210–10213

    Article  CAS  PubMed  Google Scholar 

  11. Chen W, Ji J, Feng X, Duan X, Qian G, Li P (2014) Mechanistic insight into size-dependent activity and durability in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane. J Am Chem Soc 136:16736–16739

    Article  CAS  PubMed  Google Scholar 

  12. Guo L, Cai Y, Ge J, Zhang Y, Gong L, Li X (2015) Multifunctional Au–Co@CN nanocatalyst for highly efficient hydrolysis of ammonia borane. ACS Catal 5:388–392

    Article  CAS  Google Scholar 

  13. Wang C, Tuninetti J, Wang Z, Zhang C, Ciganda R, Salmon L (2017) Hydrolysis of ammonia-borane over Ni/ZIF-8 nanocatalyst: high efficiency, mechanism, and controlled hydrogen release. J Am Chem Soc 139:11610–11615

    Article  CAS  PubMed  Google Scholar 

  14. Zhan W-W, Zhu Q-L, Xu Q (2016) Dehydrogenation of ammonia borane by metal nanoparticle catalysts. ACS Catal 6:6892–6905

    Article  CAS  Google Scholar 

  15. Du C, Ao Q, Cao N, Yang L, Luo W, Cheng G (2015) Facile synthesis of monodisperse ruthenium nanoparticles supported on graphene for hydrogen generation from hydrolysis of ammonia borane. Int J Hydrogen Energy 40:6180–6187

    Article  CAS  Google Scholar 

  16. Long Y, Song B, Shi C, Liu W, Gu H (2019) AuNPs composites of gelatin hydrogels crosslinked by ferrocene-containing polymer as recyclable supported catalysts. J Appl Polym Sci 137:48653

    Article  Google Scholar 

  17. Liu F, Liu X, Astruc D, Gu H (2019) Dendronized triazolyl-containing ferrocenyl polymers as stabilizers of gold nanoparticles for recyclable two-phase reduction of 4-nitrophenol. J Colloid Interface Sci 533:161–210

    Article  CAS  PubMed  Google Scholar 

  18. Yang Q, Xu Q, Jiang H (2017) Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chem Soc Rev 46:4774–4808

    Article  CAS  PubMed  Google Scholar 

  19. Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H (2016) Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coord Chem Rev 312:99–148

    Article  CAS  Google Scholar 

  20. Haruta M (2014) Chance and necessity: my encounter with gold catalysts. Angew Chem Int Ed 53:52–56

    Article  CAS  Google Scholar 

  21. Amiens C, Ciuculescu-Pradines D, Philippot K (2016) Controlled metal nanostructures: fertile ground for coordination chemists. Coord Chem Rev 308:409–432

    Article  CAS  Google Scholar 

  22. Xia Y, Gilroy K, Peng H, Xia X (2017) Seed-mediated growth of colloidal metal nanocrystals. Angew Chem Int Ed 56:60–95

    Article  CAS  Google Scholar 

  23. Chechik V, Crooks R (2000) Dendrimer-encapsulated Pd nanoparticles as fluorous phase-soluble catalysts. J Am Chem Soc 122:1243–1244

    Article  CAS  Google Scholar 

  24. Wang D, Astruc D (2017) The recent development of efficient earth-abundant transition-metal nanocatalysts. Chem Soc Rev 46:816–854

    Article  CAS  PubMed  Google Scholar 

  25. Liu X, Hamon J-R (2019) Recent developments in penta-, hexa- and heptadentate Schiff base ligands and their metal complexes. Coord Chem Rev 389:94–118

    Article  CAS  Google Scholar 

  26. Mu S, Liu W, Zhao L, Long Y, Gu H (2019) Antimicrobial AgNPs composites of gelatin hydrogels crosslinked by ferrocene-containing tetrablock terpolymer. Polymer 169:80–94

    Article  CAS  Google Scholar 

  27. Liu X, Mu S, Long Y (2019) Gold nanoparticles stabilized by 1,2,3-triazolyl dendronized polymers as highly efficient nanoreactors for the reduction of 4-nitrophenol. Catal Lett 149:544–551

    Article  CAS  Google Scholar 

  28. Zhang T, Yan J, Hu Y, Liu X, Wen L, Zheng K (2019) A simple central seven-membered BOPYIN: synthesis, structural, spectroscopic properties and cellular imaging application. Chem Eur J 25:9266–9271

    Article  CAS  PubMed  Google Scholar 

  29. Zhang N, Zhang T, Liu X, Liu G, Yan J, Zheng K (2019) Speed tunability of the excited-state intramolecular proton transfer process based on seven-membered ring pyrrole-indole H-bond systems. J Mol Liq 286:110887

    Article  CAS  Google Scholar 

  30. Li M, Zheng K, Chen H, Liu X, Xiao S, Yan J (2019) A novel 2,5-bis(benzo[d]thiazol-2-yl)phenol scaffold-based ratiometric fluorescent probe for sensing cysteine in aqueous solution and serum. Spectrochim Acta A 217:1–7

    Article  CAS  Google Scholar 

  31. Zhou Y, Yan J, Zhang N, Li D, Xiao S, Zheng K (2018) A ratiometric fluorescent probe for formaldehyde in aqueous solution, serum and air using aza-cope reaction. Sens. Actuators B-Chem 258:156–162.

  32. Zhang T, Li Y, Yan J, Liang Y, Xu B, Zheng K (2018) Syntheses and spectroscopic properties of substituted diazaborepins with large stokes shift. Tetrahedron Lett 74:2807–2811

    Article  CAS  Google Scholar 

  33. Zhang N, Chen J, Cheng K, Li Y, Wang L, Zheng K (2016) Synthesis and photoelectric property of N-confused porphyrins bearing an ethynylbenzoic and benzoic acid moiety. Res Chem Intermed 43:2921–2929

    Article  Google Scholar 

  34. Li Y, Yan J, Xiao S, Zhang B, Lu F, Cheng K (2016) A novel synthesis of stable 3H-pyrrolizine fused diazaborepin. Tetrahedron Lett 57:3226–3230

    Article  CAS  Google Scholar 

  35. Li Y, Yan J, Cheng K, Kong S, Zheng K, Wang L (2017) One-pot synthesis of 5,6-disubstituted 3H-pyrrolizines organocatalyzed by piperidinium acetate. Res Chem Intermed 43:5337–5344

    Article  CAS  Google Scholar 

  36. Zhang N, Wen L, Yan J, Liu G, Zhang T, Wang Y (2019) A facile synthesis of seven-membered N, O-ligands and their optical properties. J Mol Struct 1197:714–718

    Article  CAS  Google Scholar 

  37. Zhang N, Wen L, Liu X, Chen W, Yan J (2020) One pot synthesis N-confused porphyrin-dipyrrin conjugates and their optical properties. Spectrochim. Acta A. 227:117661

    Article  CAS  Google Scholar 

  38. Zhang T, Wen L, Liu G, Yan J, Liu X, Zheng K (2019) A stable AIEgen cis-diarylethene-based ‘ESIPT’ benchmark. Chem Commun 55:13713–13716

    Article  CAS  Google Scholar 

  39. Yan J, Liu G, Li N, Zhang N, Liu X (2019) Porphyrin-stabilized transition metal nanoparticles and their applications in the reduction of 4-nitrophenol and the generation of hydroxyl radicals. Eur J Inorg Chem 2019:2806–2810

    Article  CAS  Google Scholar 

  40. Hou Z, Dehaen W, Lyskawa J, Woisel P, Hoogenboom R (2017) A supramolecular miktoarm star polymer based on porphyrin metal complexation in water. Chem Commun 53:8423–8426

    Article  CAS  Google Scholar 

  41. Wang Q, Fu F, Escobar A, Moya S, Ruiz J, Astruc D (2018) “Click” dendrimer-stabilized nanocatalysts for efficient hydrogen release upon ammonia-borane hydrolysis. ChemCatChem 10:2673–2680

    Article  CAS  Google Scholar 

  42. Wang Q, Fu F, Yang S, Martinez M, Ramirez M, Moya S (2019) Dramatic synergy in CoPt nanocatalysts stabilized by “click” dendrimers for evolution of hydrogen from hydrolysis of ammonia borane. ACS Catal 9:1110–1119

    Article  CAS  Google Scholar 

  43. Akbayrak S, Tonbul Y, Özkar S (2016) Ceria supported rhodium nanoparticles: superb catalytic activity inhydrogen generation from the hydrolysis of ammonia borane. Appl Catal B 198:162–170

    Article  CAS  Google Scholar 

  44. Akbayrak S, Özkar S (2012) Ruthenium(0) nanoparticles supported on multiwalled carbon nanotube as highly active catalyst for hydrogen generation from ammonia-borane. ACS Appl Mater Interfaces 4:6302–6310

    Article  CAS  PubMed  Google Scholar 

  45. Gao Y, Zhang H, Han A, Wang J, Tan H, Tok E, Jaenicke S, Chuah G (2018) Ru/ZrO2 catalysts for transfer hydrogenation of levulinic acid with formic acid/formate mixtures: importance of support stability. Chem Select 3:1343–1351

    CAS  Google Scholar 

  46. Li Z, He T, Matsumura D, Miao S, Wu A, Liu L, Wu G, Chen P (2017) Atomically dispersed Pt on the surface of Ni particle: synthesis and catalytic function in hydrogen generation from aqueous ammonia borane. ACS Catal 10:6762–6769

    Article  Google Scholar 

  47. Aijaz A, Karkamkar A, Choi Y, Tsumori N, Rönnebro E, Autrey T, Shioyama H, Xu Q (2012) Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal−organic framework: a double solvents approach. J Am Chem Soc 134:13926–13929

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (Nos. 21606145, 21805166), the 111 Project (No. D20015), State Key Laboratory of Coordination Chemistry Foundation of Nanjing University (No. SKLCC1811), the Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University (KF2019-05) and the outstanding young and middle-aged science and technology innovation teams, Ministry of Education, Hubei province, China (T2020004) and China Three Gorges University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiaying Yan or Xiang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 396 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Liu, G., Sun, Y. et al. H2 Evolution Upon Hydrolysis of Ammonia-Borane Catalyzed by Porphyrin Stabilized Nanocatalysts. Catal Lett 151, 2272–2278 (2021). https://doi.org/10.1007/s10562-020-03501-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03501-8

Keywords

Navigation