Skip to main content
Log in

Nano and Sub-nano Gold–Cobalt Particles as Effective Catalysts in the Synthesis of Propargylamines via AHA Coupling

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Titania supported Au–Co catalysts with nano- and sub-nanoparticles, were prepared with 1% Au and different contents of cobalt by one pot deposition precipitation with urea. Monometallic gold and cobalt catalysts were also prepared by the same method for a comparative purpose. The characterization of bimetallic catalyst evidenced the presence of sub-nanoparticles where 50% of cobalt and 40% of gold particles are smaller than 1 nm and the formation Au–Co particles. The results show a positive effect of cobalt on gold particles size and the catalytic activity. The effectiveness of these catalysts in the synthesis of several propargylamines via amine, CH2Cl2 and alkyne coupling (AHA coupling) was demonstrated. Different propargylamines were synthesized with very good yields (71%–88%). A comparative study of monometallic gold, monometallic cobalt and bimetallic gold–cobalt catalysts was investigated. The most efficient catalyst was reused for up to six reaction cycles without significant activity loss.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9
Scheme 2

Similar content being viewed by others

References

  1. Zhuang Z, Sheng W, Yan Y (2014) Synthesis of monodispere Au@ Co3O4 core-shell nanocrystals and their enhanced catalytic activity for oxygen evolution reaction. Adv Mater 26(23):3950–3955

    CAS  PubMed  Google Scholar 

  2. Hutchings GJ (2005) Catalysis by gold. Catal Today 100(1):55–61

    CAS  Google Scholar 

  3. Zanella R, Delannoy L, Louis C (2005) Mechanism of deposition of gold precursors onto TiO2 during the preparation by cation adsorption and deposition–precipitation with NaOH and urea. Appl Catal A 291(1–2):62–72

    CAS  Google Scholar 

  4. Piella J, Bastús NG, Puntes V (2016) Size-controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties. Chem Mater 28(4):1066–1075

    CAS  Google Scholar 

  5. Liu X, Wang A, Li L et al (2011) Structural changes of Au–Cu bimetallic catalysts in CO oxidation: in situ XRD, EPR, XANES, and FT-IR characterizations. J Catal 278(2):288–296

    CAS  Google Scholar 

  6. Kowalska E, Janczarek M, Rosa L et al (2014) Mono- and bi-metallic plasmonic photocatalysts for degradation of organic compounds under UV and visible light irradiation. Catal Today 230:131–137

    CAS  Google Scholar 

  7. Cybula A, Priebe JB, Pohl MM et al (2014) The effect of calcination temperature on structure and photocatalytic properties of Au/Pd nanoparticles supported on TiO2. Appl Catal B 152–153(1):202–211

    Google Scholar 

  8. Suo Z, Lv A, Lv H et al (2009) Influence of Au promoter on hydrodesulfurization activity of thiophene over sulfided Au–Ni/SiO2 bimetallic catalysts. Catal Commun 10(8):1174–1177

    CAS  Google Scholar 

  9. Ameur N, Berrichi A, Bedrane S et al (2014) Preparation and characterization of Au/Al2O3 and Au-Fe/Al2O3 materials, active and selective catalysts in oxidation of cyclohexene. Adv Mater Res 856:48–52

    CAS  Google Scholar 

  10. Wu S-K, Lin R-J, Jang S et al (2013) Theoretical investigation of the mechanism of the water-gas shift reaction on cobalt@ gold core-shell nanocluster. J Phys Chem 118(1):298–309

    Google Scholar 

  11. Xu X, Fu Q, Wei M et al (2014) Comparative studies of redox behaviors of Pt–Co/SiO2 and Au–Co/SiO2 catalysts and their activities in CO oxidation. Catal Sci Technol 4(9):3151–3158

    CAS  Google Scholar 

  12. Díaz G, Gómez-Cortés A, Hernández-Cristobal O et al (2011) Hydrogenation of citral over Ir–Au/TiO2 catalysts. Effect of the preparation method. Top Catal. 54:467–473

    Google Scholar 

  13. Barrios C, Albiter E, Jimenez JG et al (2016) Photocatalytic hydrogen production over titania modified by gold–Metal (palladium, nickel and cobalt) catalysts. Int J Hydrogen Energy. 41(48):23287–23300

    CAS  Google Scholar 

  14. Soulé J-F, Miyamura H, Kobayashi S (2011) Powerful amide synthesis from alcohols and amines under aerobic conditions catalyzed by gold or gold/iron,-nickel or-cobalt nanoparticles. J Am Chem Soc 133(46):18550–18553

    PubMed  Google Scholar 

  15. Gamboa-Rosales N, Ayastuy J, Iglesias-González A et al (2012) Oxygen-enhanced WGS over ceria-supported Au–Co3O4 bimetallic catalysts. Chem Eng J 207:49–56

    Google Scholar 

  16. Ajaikumar S, Ahlkvist J, Larsson W et al (2011) Oxidation of α-pinene over gold containing bimetallic nanoparticles supported on reducible TiO2 by deposition-precipitation method. Appl Catal A 392(1–2):11–18

    CAS  Google Scholar 

  17. Tamasauskaite-Tamasiunaite L, Jagminiene A, Balčiunaite A et al (2013) Electrocatalytic activity of the nanostructured Au–Co catalyst deposited onto titanium towards borohydride oxidation. Int J Hydrogen Energy 38(33):14232–14241

    CAS  Google Scholar 

  18. Zhang H, Dai B, Wang X et al (2013) Non-mercury catalytic acetylene hydrochlorination over bimetallic Au–Co (III)/SAC catalysts for vinyl chloride monomer production. Green Chem 15(3):829–836

    CAS  Google Scholar 

  19. Wu Z, Zhang L, Guan Q et al (2015) Catalytic oxidation of toluene over Au–Co supported on SBA-15. Mater Res Bull 70:567–572

    CAS  Google Scholar 

  20. Santos D, Balčiūnaitė A, Tamašauskaitė-Tamašiūnaitė L et al (2016) AuCo/TiO2-NTs anode catalysts for direct borohydride fuel cells. J Electrochem Soc 163(14):1553–1557

    Google Scholar 

  21. Pillion JE, Thompson ME (1991) Synthesis and polymerization of propargylamine and aminoacetonitrile intercalation compounds. Chem Mater 3(5):777–779

    CAS  Google Scholar 

  22. Sunderhaus JD, Martin SF (2009) Applications of multicomponent reactions to the synthesis of diverse heterocyclic scaffolds. Chem Eur J 15(6):1300–1308

    CAS  PubMed  Google Scholar 

  23. Maruyama W, Akao Y, Youdim MB et al (2001) Transfection-enforced Bcl-2 overexpression and an anti-Parkinson drug, rasagiline, prevent nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase induced by an endogenous dopaminergic neurotoxin, N-methyl (R) salsolinol. J Neurochem 78(4):727–735

    CAS  PubMed  Google Scholar 

  24. de Sousa FT, da Silva MR, de Oliveira MdCF et al (2015) Chemoenzymatic synthesis of rasagiline mesylate using lipases. Appl Catal, A 492:76–82

    Google Scholar 

  25. Naoi M, Maruyama W, Youdim MBH et al (2003) Anti-apoptotic function of propargylamine inhibitors of type-B monoamine oxidase. Inflammopharmacology 11(2):175–181

    CAS  PubMed  Google Scholar 

  26. Lo VKY, Kung KKY, Wong MK et al (2009) Gold(III) ((CN)-N-Lambda) complex-catalyzed synthesis of propargylamines via a three-component coupling reaction of aldehydes, amines and alkynes. J Organomet Chem 694(4):583–591

    CAS  Google Scholar 

  27. Price GA, Brisdon AK, Flower KR et al (2014) Solvent effects in gold-catalysed A3-coupling reactions. Tetrahedron Lett 55(1):151–154

    CAS  Google Scholar 

  28. Xiao F, Chen Y, Liu Y et al (2008) Sequential catalytic process: synthesis of quinoline derivatives by AuCl3/CuBr-catalyzed three-component reaction of aldehydes, amines, and alkynes. Tetrahedron 64(12):2755–2761

    CAS  Google Scholar 

  29. Kung KKY, Li GL, Zou L et al (2012) Gold-mediated bifunctional modification of oligosaccharidesvia a three-component coupling reaction. Org Biomol Chem 10(5):925–930

    CAS  PubMed  Google Scholar 

  30. Srinivas V, Koketsu M (2013) Synthesis of indole-2-, 3-, or 5-substituted propargylamines via gold(III)-catalyzed three component reaction of aldehyde, alkyne, and amine in aqueous medium. Tetrahedron 69(37):8025–8033

    CAS  Google Scholar 

  31. Wen-Wen C, Hai-Peng B, Chao-Jun L (2010) The first cobalt-catalyzed transformation of alkynyl C–H bond: aldehyde-alkyne-amine (A3) coupling. Synlett 3:475–479

    Google Scholar 

  32. Layek S, Agrahari B, Kumari S et al (2018) [Zn(l-proline)2] catalyzed one-pot synthesis of propargylamines under solvent-free conditions. Catal Lett 148(9):2675–2682

    CAS  Google Scholar 

  33. Shore G, Yoo W-J, Li C-J et al (2009) Propargyl amine synthesis catalysed by gold and copper thin films by using microwave-assisted continuous-flow organic synthesis (MACOS). Chem Eur J 16(1):126–133

    Google Scholar 

  34. Layek K, Chakravarti R, Kantam ML et al (2011) Nanocrystalline magnesium oxide stabilized gold nanoparticles: an advanced nanotechnology based recyclable heterogeneous catalyst platform for the one-pot synthesis of propargylamines. Green Chem 13(10):2878–2887

    CAS  Google Scholar 

  35. Chng LL, Yang J, Wei Y et al (2009) Semiconductor-gold nanocomposite catalysts for the efficient three-component coupling of aldehyde, amine and alkyne in water. Adv Synth Catal 351(17):2887–2896

    CAS  Google Scholar 

  36. Gonzalez Bejar M, Peters K, Hallett Tapley GL et al (2013) Rapid one-pot propargylamine synthesis by plasmon mediated catalysis with gold nanoparticles on ZnO under ambient conditions. Chem Commun 49(17):1732–1734

    CAS  Google Scholar 

  37. Huang JL, Gray DG, Li CJ (2013) A(3)-Coupling catalyzed by robust Au nanoparticles covalently bonded to HS-functionalized cellulose nanocrystalline films. Beilstein J Org Chem 9:1388–1396

    PubMed  PubMed Central  Google Scholar 

  38. Ko HM, Kung KKY, Cui JF et al (2013) Bis-cyclometallated gold(iii) complexes as efficient catalysts for synthesis of propargylamines and alkylated indoles. Chem Commun 49(78):8869–8871

    CAS  Google Scholar 

  39. Shabbir S, Lee Y, Rhee H (2015) Au(III) catalyst supported on a thermoresponsive hydrogel and its application to the A-3 coupling reaction in water. J Catal 322:104–108

    CAS  Google Scholar 

  40. Anand N, Ramudu P, Reddy KHP et al (2013) Gold nanoparticles immobilized on lipoic acid functionalized SBA-15: synthesis, characterization and catalytic applications. Appl Catal A 454:119–126

    CAS  Google Scholar 

  41. Villaverde G, Corma A, Iglesias M et al (2012) Heterogenized gold complexes: recoverable catalysts for multicomponent reactions of aldehydes, terminal alkynes, and amines. ACS Cata 2(3):399–406

    CAS  Google Scholar 

  42. Borah BJ, Borah SJ, Saikia K et al (2014) Efficient one-pot synthesis of propargylamines catalysed by gold nanocrystals stabilized on montmorillonite. Catal Sci Technol 4(11):4001–4009

    CAS  Google Scholar 

  43. Liu L, Zhang X, Gao J et al (2012) Engineering metal-organic frameworks immobilize gold catalysts for highly efficient one-pot synthesis of propargylamines. Green Chem 14(6):1710–1720

    CAS  Google Scholar 

  44. Karimi B, Gholinejad M, Khorasani M (2012) Highly efficient three-component coupling reaction catalyzed by gold nanoparticles supported on periodic mesoporous organosilica with ionic liquid framework. Chem Commun 48(71):8961–8963

    CAS  Google Scholar 

  45. Zhang X, Corma A (2008) Supported gold(III) catalysts for highly efficient three-component coupling reactions. Angew Chem Int Ed 47(23):4358–4361

    Google Scholar 

  46. Jose Climent M, Corma A, Iborra S (2012) Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Adv 2(1):16–58

    Google Scholar 

  47. Kidwai M, Bansal V, Kumar A et al (2007) The first Au-nanoparticles catalyzed green synthesis of propargylamines via a three-component coupling reaction of aldehyde, alkyne and amine. Green Chem 9(7):742–745

    CAS  Google Scholar 

  48. Abahmane L, Koehler JM, Gross GA (2011) Gold-nanoparticle-catalyzed synthesis of propargylamines: the traditional A(3)-multicomponent reaction performed as a two-step flow process. Chem Eur J 17(10):3005–3010

    CAS  PubMed  Google Scholar 

  49. Jiang Y, Zhang X, Dai X et al (2017) Microwave-assisted synthesis of ultrafine Au nanoparticles immobilized on MOF-199 in high loading as efficient catalysts for a three-component coupling reaction. Nano Res 10(3):876–889

    CAS  Google Scholar 

  50. Gholinejad M, Zareh F, Najera C (2018) Iron oxide modified with pyridyl-triazole ligand for stabilization of gold nanoparticles: an efficient heterogeneous catalyst for A3 coupling reaction in water. Appl Organomet Chem 32(9):e4454

    Google Scholar 

  51. Bhatte KD, Sawant DN, Deshmukh KM et al (2011) Nanosize Co3O4 as a novel, robust, efficient and recyclable catalyst for A3-coupling reaction of propargylamines. Catal Commun 16(1):114–119

    CAS  Google Scholar 

  52. Safaei-Ghomi J, Nazemzadeh SH (2017) Ionic liquid-attached colloidal silica nanoparticles as a new class of silica nanoparticles for the preparation of propargylamines. Catal Lett 147(7):1696–1703

    CAS  Google Scholar 

  53. Shirole G, Kadnor V, Gaikwad S et al (2016) Iron oxide-supported copper oxide nanoparticles catalyzed synthesis of propargyl amine derivatives via multicomponent approach. Res Chem Intermed 42(5):4785–4795

    CAS  Google Scholar 

  54. Hekmati M (2019) Application of biosynthesized CuO nanoparticles using Rosa canina fruit extract as a recyclable and heterogeneous nanocatalyst for alkyne/aldehyde/amine A3 coupling reactions. Catal Lett 149(8):2325–2331

    CAS  Google Scholar 

  55. Berrichi A, Bachir R, Benabdallah M et al (2015) Supported nano gold catalyzed three-component coupling reactions of amines, dichloromethane and terminal alkynes (AHA). Tetrahedron Lett 56(11):1302–1306

    CAS  Google Scholar 

  56. Sharma RK, Sharma S, Gaba G (2014) Silica nanospheres supported diazafluorene iron complex: an efficient and versatile nanocatalyst for the synthesis of propargylamines from terminal alkynes, dihalomethane and amines. RSC Adv 4(90):49198–49211

    CAS  Google Scholar 

  57. Berrichi A, Bachir R, Bedrane S et al (2019) Heterogeneous bimetallic Au–Co nanoparticles as new efficient catalysts for the three-component coupling reactions of amines, alkynes and CH2Cl2. Res Chem Intermed 45(6):3481–3495

    CAS  Google Scholar 

  58. Drăgan N, Crişan M, Răileanu M et al (2014) The effect of Co dopant on TiO2 structure of sol–gel nanopowders used as photocatalysts. Ceram Int 40(8):12273–12284

    Google Scholar 

  59. Wang X, Huang Z, Lu L et al (2015) Preparation and catalytic activities of Au/Co bimetallic nanoparticles for hydrogen generation from NaBH4 solution. J Nanosci Nanotechnol 15(4):2770–2776

    CAS  PubMed  Google Scholar 

  60. Yu D, Zhang Y (2011) Copper-catalyzed three-component coupling of terminal alkyne, dihalomethane and amine to propargylic amines. Adv Synth Catal 353(1):163–169

    CAS  Google Scholar 

  61. Nador F, Volpe MA, Alonso F et al (2013) Copper nanoparticles supported on silica coated maghemite as versatile, magnetically recoverable and reusable catalyst for alkyne coupling and cycloaddition reactions. Appl Catal A 455:39–45

    CAS  Google Scholar 

  62. Fodor A, Kiss A, Debreczeni N et al (2010) A simple method for the preparation of propargylamines using molecular sieve modified with copper(ii). Org Biomol Chem 8(20):4575–4581

    CAS  PubMed  Google Scholar 

  63. Gao J, Song QW, He LN et al (2012) Efficient iron(III)-catalyzed three-component coupling reaction of alkynes, CH2Cl2 and amines to propargylamines. Chem Commun 48(14):2024–2026

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funding by the Algerian DGRSDT-MESRS, and the University of Tlemcen. The authors thank the company Thermo Fisher Scientific (Europe NanoPort-Eindhoven-Netherlands) and the company Sinal Algeria for their help in carrying out electron microscopy characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amina Berrichi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bensaad, M., Berrichi, A., Bachir, R. et al. Nano and Sub-nano Gold–Cobalt Particles as Effective Catalysts in the Synthesis of Propargylamines via AHA Coupling. Catal Lett 151, 1068–1079 (2021). https://doi.org/10.1007/s10562-020-03382-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03382-x

Keywords

Navigation