Skip to main content
Log in

Effects of Lanthanum Incorporation on Stability, Acidity and Catalytic Performance of Y Zeolites

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A better understanding of the roles of rare earth (RE) in heterogeneous catalysts is crucial for improving the properties of catalysts in petro-chemical industry. Fluid catalytic cracking (FCC) catalysts containing RE-incorporated Y zeolites with excellent stability and activity are continuously used to improve the conversion of heavy oil into transportation fuels. In this paper, the effect mechanism of Lanthanum (La) on stability and acidity of Y zeolites are elucidated in conjunction with their influences on catalytic performance. The improvement on stability of La-incorporated Y zeolites can be attributed to the La incorporation which bonds strongly with framework O2 and O3 atoms and strengthens the interaction between framework Al and its neighbouring O atoms. It is the enhanced stability restrains the release of framework Al and the formation of extra-framework Al, hence leads to a decrease of total L acid amount and an increase of total B acid amount, especially a clear increase in medium strength B acid amount (with 31P NMR/TMPO chemical shifts at 62 and 58) and a significant decrease in strong B acid amount (with 31P NMR/TMPO chemical shifts at 70 and 65) with the incorporation of La into Y zeolites. However, the total acid amount decreases significantly when La2O3 content is high. The increase of B acid amount and improved stability of LaHY zeolites, boost the conversion ability and isomerization ability of heavy oil, while resulting in poor olefins selectivity and coke selectivity caused by the enhancement of hydrogen transfer reactions. Therefore, Y zeolite containing appropriate La2O3 content should be considered to enhance heavy oil cracking ability while boosting light olefins production and optimizing coke selectivity.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Corma A, Orchilles AV (2000) Current views on the mechanism of catalytic cracking. Microporous Mesoporous Mater 35:21–30

    Google Scholar 

  2. Vincent B, Benoitl L, Ruben M, Toshiyuki Y, Ken AP, Mellissa C, Bilge Y (2017) Engineering zeolites for catalytic cracking to light olefins. ACS Catal 7:6542–6566

    Google Scholar 

  3. Jeffrey SC, Neol WC, David LT (1993) Stabilization of aluminum by rare earth and alkaline earth ions. Appl Catal A 101:105–116

    Google Scholar 

  4. Sousa-Aguiar EF, Trigueiro FE, Zotinc FMZ (2013) The role of rare earth elements in zeolites and cracking catalysts. Catal Today 218:115–122

    Google Scholar 

  5. Trovarelli A, de Leitenburg C, Boaro M, Dolcetti G (1999) The utilization of ceria in industrial catalysis. Catal Today 50:353–362

    CAS  Google Scholar 

  6. Occelli ML, Ritz P (1999) The effects of Na ions on the properties of calcined rare-earths Y (CREY) zeolites. Appl Catal A 183:53–59

    CAS  Google Scholar 

  7. Pine LA (1990) Vanadium-catalyzed destruction of USY zeolites. J Catal 125:514–524

    CAS  Google Scholar 

  8. Liu CH, Gao XH, Zhang ZD, Zhang HT, Sun SH, Deng YQ (2004) Surface modification of zeolite Y and mechanism for reducing naphtha olefin formation in catalytic cracking reaction. Appl Catal A 264:225–228

    CAS  Google Scholar 

  9. Liu C, Li G, Hensen EJM, Pidko EA (2016) Relationship between acidity and catalytic reactivity of faujasite zeolite: a periodic DFT study. J Catal 344:570–577

    CAS  Google Scholar 

  10. Moreira CR, Homs N, Fierro JLG, Pereira MM, de la Piscina RP (2010) HUSY zeolite modified by lanthanum: effect of lanthanum introduction as a vanadium trap. Microporous Mesoporous Mater 133:75–81

    CAS  Google Scholar 

  11. Sousa-Aguiar EF, Camorim VLD, Zotin FMZ (1998) A Fourier transform infrared spectroscopy study of La-, Nd-, Sm-, Gd- and Dy-containing Y zeolites. Microporous Mesoporous Mater 25:25–34

    CAS  Google Scholar 

  12. Trigueiro FE, Monteiro DFJ, Zotin FMZ (2002) Thermal stability of Y zeolites containing different rare earth cations. J Alloys Compd 344:337–341

    CAS  Google Scholar 

  13. Corma A, Fornes V, Melo FV, Herrero J (1987) Comparison of the information given by ammonia TPD and pyridine adsorption-desorption on the acidity of dealuminated HY and LaHY zeolite cracking catalysts. Zeolites 7:559–563

    CAS  Google Scholar 

  14. García P, Lima E, Aguilar J (2009) Fractal extra-framework species in de-aluminated LaY Zeolites and their catalytic activity. Catal Lett 128:385–391

    Google Scholar 

  15. Hunger M (1997) Brønsted acid sites in zeolites characterized by multinuclear solid-state NMR spectroscopy. Catal Rev Sci Eng 39:345–393

    CAS  Google Scholar 

  16. Kao HM, Liu H, Jiang JC, Lin SH, Grey CP (2000) Determining the structure of trimethylphosphine bound to the Brønsted acid site in zeolite HY: double-resonance NMR and ab initio studies. J Phys Chem B 104:4923–4933

    CAS  Google Scholar 

  17. Rakiewicz EF, Peters AW, Wormsbecher RF, Sutovich KJ, Mueller KT (1998) Characterization of acid sites in zeolitic and other inorganic systems using solid-state 31P NMR of the probe molecule trimethylphosphine oxide. J Phys Chem B 102:2890–2896

    CAS  Google Scholar 

  18. Chen WH, Huang SJ, Sakthivel A (2004) Acidity characterization of nanocrystalline H-ZSM-5 zeolites by 31P MAS NMR of adsorbed phosphine oxide probes. In: Champion Y, Fecht H-J (eds) Nano-architectured and nanostructrued materials: fabrication, control and properties. Wiley-VCH, Weinheim, pp 127–134

    Google Scholar 

  19. Karra M, Mueller KT (2002) NMR characterization of Brønsted acid sites in faujasitic zeolites with use of perdeuterated trimethylphosphine oxide. J Am Chem Soc 124:902–903

    CAS  PubMed  Google Scholar 

  20. Mi S, Wei T, Sun J, Liu P, Li X, Zheng Q, Gong K, Liu X, Gao X, Wang B, Zhao H, Liu H, Shen B (2017) Catalytic function of boron to creating interconnected mesoporosity in microporous Y zeolites and its high performance in hydrocarbon cracking. J Catal 347:116–126

    CAS  Google Scholar 

  21. Akah A (2017) Application of rare earths in fluid catalytic cracking: a review. J Rare Earths 35:941–956

    CAS  Google Scholar 

  22. Lemos F, Ribeiro FR, Kern M, Giannetto G, Guisnet M (1987) Influence of the cerium content of CeHY catalysts on their physicochemical and catalytic properties. Appl Catal A 29:43–54

    CAS  Google Scholar 

  23. Rahimi N, Karimzadeh R (2011) Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: a review. Appl Catal A 398:1–13

    CAS  Google Scholar 

  24. Liu XM, Liu S, Liu YX (2016) A potential substitute for CeY zeolite used in fluid catalytic cracking process. Microporous Mesoporous Mater 226:162–168

    CAS  Google Scholar 

  25. Sanchez-Castillo MA, Madon RJ, Dumesic JA (2005) Role of rare earth cations in Y zeolite for hydrocarbon cracking. J Phys Chem B 109:2164–2175

    CAS  PubMed  Google Scholar 

  26. Gao X, Qin Z, Wang B, Zhao X, Li J, Zhao H, Liu H, Shen B (2012) High silica REHY zeolite with low rare earth loading as high-performance catalyst for heavy oil conversion. Appl Catal A 413–414:254–260

    Google Scholar 

  27. Zhang L, Li Q, Qin YC, Zhang XT, Gao XH, Song LJ (2016) Investigation on the mechanism of adsorption and desorption behavior in cerium ions modified Y-type zeolite and improved hydrocarbons conversion. J Rare Earths 34:1221–1227

    CAS  Google Scholar 

  28. Myrstad T (1997) Effect of vanadium on octane numbers in FCC-naphtha. Appl Catal A 155:87–98

    CAS  Google Scholar 

  29. Akah A, Al-Ghrami M (2015) Maximizing propylene production via FCC technology. Appl Petrochem Res 5:377–381

    CAS  Google Scholar 

  30. de la Puente G, Souza-Aguiar EF, Zotin FMZ, Camorim VLD, Sedran U (2000) Influence of different rare earth ions on hydrogen transfer over Y zeolite. Appl Catal A 197:41–46

    Google Scholar 

  31. Wallenstein D, Schäfer K, Harding RH (2015) Impact of rare earth concentration and matrix modification in FCC catalysts on their catalytic performance in a wide array of operational parameters. Appl Catal A 502:27–41

    CAS  Google Scholar 

  32. Schüßler F, Pidko EA, Kolvenbach R, Sievers C, Hensen EJ, van Santen RA, Lercher JA (2011) Nature and location of cationic lanthanum species in high alumina containing faujasite type zeolites. J Phys Chem C 115:21763–21776

    Google Scholar 

  33. Nery JG, Mascarenhas YP, Bonagamba TJ, Mello NC, Souza-Aguiar EF (1997) Location of cerium and lanthanum cations in CeNaY and LaNaY after calcination. Zeolites 18:44–49

    CAS  Google Scholar 

  34. Saxena SK, Kumar M, Viswanadham N (2013) Studies on textural properties of lanthanum-exchanged Y zeolites as promising materials for value upgradation of Jatropha oil. J Mater Sci 48:7949–7959

    CAS  Google Scholar 

  35. Zheng AM, Zhang HL, Lu X, Liu SB, Deng F (2008) Theoretical predictions of 31P NMR chemical shift threshold of trimethylphosphine oxide absorbed on solid acid catalysts. J Phys Chem B 112:4496–4505

    CAS  PubMed  Google Scholar 

  36. Zhao Q, Chen WH, Huang SJ (2002) Discernment and quantification of internal and external acid sites on zeolites. J Phys Chem B 106:4462–4469

    CAS  Google Scholar 

  37. Haw JF, Nicholas JB (1996) What NMR has told us about solid acidity. Stud Surf Sci Catal 101:573–580

    CAS  Google Scholar 

  38. Lunsford JH, Rothwel WP (1985) Acid sites in zeolite Y: a solid-state NMR and infrared study using trimethylphosphine as a probe molecule. J Am Chem Soc 107:1540–1547

    CAS  Google Scholar 

  39. Xu B, Bordiga S, Prins R, van Bokhoven JA (2007) Effect of framework Si/Al ratio and extra-framework aluminum on the catalytic activity of Y zeolite. Appl Catal A 333:245–253

    CAS  Google Scholar 

  40. Scherzer J (1989) Octane-enhancing zeolitic FCC catalysts: scientific and technical aspects. Catal Rev Sci Eng 31:215–354

    CAS  Google Scholar 

  41. Thomas B, Sugunan S (1996) Rare-earth (Ce3+, La3+, Sm3+, and RE3+) exchanged Na-Y zeolites and K-10 clay as solid acid catalysts for the synthesis of benzoxazole via Beckmann rearrangement of salicylaldoxime. Microporous Mesoporous Mater 206:55–64

    Google Scholar 

  42. Nery JG, Giotto MV, Mascarenhas YP, Cardoso D, Zotin FMZ, Souza-Aguiar EF (2000) Rietveld refinement and solid state NMR study of Nd-, Sm-, Gd-, and Dy-containing Y zeolites. Microporous Mesoporous Mater 41:281–293

    CAS  Google Scholar 

  43. Zheng A, Huang SJ, Chen WH (2008) 31P chemical shift of absorbed trialkylphosphine oxide for acidity characterization of solid acid catalysts. J Phys Chem A 112:7349–7356

    CAS  PubMed  Google Scholar 

  44. Zhou DH, Bao Y, Yang MM, He N, Yang G (2006) DFT studies on the location and acid strength of Bronsted acid sites in MCM-22 zeolite. J Mol Catal A 244:11–19

    CAS  Google Scholar 

  45. Beaumont R, Barthomeuf DXY (1972) Aluminum-deficient and ultrastable faujasite-type zeolites: I. Acidic and structural properties. J Catal 26:218–225

    CAS  Google Scholar 

  46. Kornatowski J, Zadrozna G, Rozwadowski M, Zibrowius B, Marlow F, Lercher JA (2001) New strategy for chromium substitution and crystal morphology control-synthesis and characteristies of CrAPO-5. Chem Mater 13:4447–4456

    CAS  Google Scholar 

  47. Jin D, Zhu B, Hou Z (2007) Dimethyl ether synthesis via methanol and syngas over rare earth metals modified zeolite Y and dual Cu–Mn–Zn catalysts. Fuel 86:2707–2713

    CAS  Google Scholar 

  48. Jin DF, Zhu B, Hou ZY, Fei JH, Lou H, Zheng XM (2007) Dimethyl ether synthesis via methanol and syngas over rare earth metals modified zeolite Y and dual Cu–Mn–Zn catalysts. Fuel 86:2707–2713

    CAS  Google Scholar 

  49. Yang G, Wang Y, Zhou DH (2004) Investigation on thermal stability of La/ZSM-5 zeolite and the La species. Acta Phys-Chim Sin 20:60–64

    Google Scholar 

  50. Zhao Q, Chen WH, Huang SJ, Liu SB (2003) Qualitative and quantitative determination of acid sites on solid acid catalysts. Stud Surf Sci Catal 145:205–209

    CAS  Google Scholar 

  51. Sutovich KJ, Peters AW, Rakiewicz EF, Mueller KT (1999) Simultaneous quantification of Brønsted- and Lewis-acid sites in a USY zeolite. J Catal 183:155–158

    CAS  Google Scholar 

  52. Dempsey E (1975) A tentative model of Y zeolites to explain their acid behavior. J Catal 39:155–157

    CAS  Google Scholar 

  53. Dempsey E (1974) Acid strength and aluminum site reactivity of Y zeolites. J Catal 33:497–499

    CAS  Google Scholar 

  54. Li SH, Zheng AM, Su YC, Zhang HL, Chen L, Yang J, Ye CH, Deng F (2007) Brønsted/Lewis acid synergy in dealuminated HY zeolite: a combined solid-state NMR and theoretical calculation study. J Am Chem Soc 129:11161–11171

    CAS  PubMed  Google Scholar 

  55. Corma A, Fornés V, Mocholí FA, Montón JB, Rey F (1991) Influence of superacid sites in ultrastable Y zeolites on gas oil cracking. ACS Symp Ser 452:12–26

    CAS  Google Scholar 

  56. Bai P, Xie M, Etim UJ, Xing W, Wu P, Zhang Y, Liu B, Wang Y, Qiao K, Yan Z (2018) Zeolite Y mother liquor modified γ-Al2O3 with enhanced Brönsted acidity as active matrix to improve the performance of fluid catalytic cracking catalyst. Ind Eng Chem Res 57:1389–1398

    CAS  Google Scholar 

  57. Boronat M, Viruela P, Corma A (1998) Theoretical study of the mechanism of zeolite-catalyzed isomerization reactions of linear butenes. J Phys Chem A 102:982–989

    CAS  Google Scholar 

  58. Abbot J, Wojeieehowski BW (1988) The effect of temperature on the product distribution and kinetics of reactions of n-hexadecane on HY zeolite. J Catal 109:274–283

    CAS  Google Scholar 

  59. Buchanan JS, Santiestban JG, Haag WO (1996) Mechanistic considerations in acid-catalyzed cracking of olefins. J Catal 158:279–287

    CAS  Google Scholar 

  60. Xu H, Yuan Q, Yuan E, Li F, Li Z, Ji S, Yang Z, Liu G, Zhang X (2017) Promotion on light olefins production through modulating the reaction pathways for n-pentane catalytic cracking over ZSM-5 based catalysts. Appl Catal A 543:51–60

    Google Scholar 

Download references

Acknowledgements

The authors thank the Ministry of Science and Technology of China for providing financial support through the National Key R & D plan (Grant No. 2017YFB0306504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanqing Yu.

Ethics declarations

Conflict of interest

All authors declare that they have no known competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1446 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Yan, J., Lin, W. et al. Effects of Lanthanum Incorporation on Stability, Acidity and Catalytic Performance of Y Zeolites. Catal Lett 151, 698–712 (2021). https://doi.org/10.1007/s10562-020-03357-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03357-y

Keywords

Navigation