Skip to main content
Log in

Tailoring Graphene Oxide Framework with N- and S- Containing Organic Ligands for the Confinement of Pd Nanoparticles Towards Recyclable Catalyst Systems

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Graphene oxide frameworks (GOFs) tailored with heteroatom-containing organic ligands were utilized for the efficient confinement of Pd nanoparticles (NPs) to achieve highly recyclable Pd catalysts for Suzuki-Miyaura cross-coupling reaction (SMC). The tailored GOFs were constructed using benzene-1,4-diboronic acid as a pillaring unit and N- and S- containing additional organic ligands to anchor Pd NPs. Highly dispersed Pd NPs with narrow size distribution were generated inside the gallery space of the GOFs. The presence of the anchoring ligands significantly enhanced the stability of Pd NPs via strong Pd−N and Pd−S bonds, leading to high activity and recyclability in the SMC reaction.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Burress JW, Gadipelli S, Ford J, Simmons JM, Zhou W, Yildirim T (2010) Angew Chem Int Ed 49:8902–8904

    CAS  Google Scholar 

  2. Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM (2005) Science 310:1166–1170

    PubMed  Google Scholar 

  3. El-Kaderi HM, Hunt JR, Mendoza-Cortés JL, Côté AP, Taylor RE, O’Keeffe M, Yaghi OM (2007) Science 316:268–272

    CAS  PubMed  Google Scholar 

  4. Nishiyabu R, Kubo Y, James TD, Fossey JS (2011) Chem Commun 47:1124–1150

    CAS  Google Scholar 

  5. Severin K (2009) Dalton Trans. https://doi.org/10.1039/B902849H

    Article  PubMed  Google Scholar 

  6. Rana S, Jonnalagadda SB (2017) Chem Select 2:2277–2281

    CAS  Google Scholar 

  7. Rana S, Jonnalagadda SB (2017) RSC Adv 7:2869–2879

    CAS  Google Scholar 

  8. Rana S, Jonnalagadda SB (2017) Catal Commun 100:183–186

    CAS  Google Scholar 

  9. Haque E, Yamauchi Y, Malgras V, Reddy KR, Yi JW, Hossain MSA, Kim J (2018) Chem Asian J 13:3561–3574

    CAS  PubMed  Google Scholar 

  10. Zhu P, Sumpter BG, Meunier V (2013) J Phys Chem C 117:8276–8281

    CAS  Google Scholar 

  11. Srinivas G, Burress JW, Ford J, Yildirim T (2011) J Mater Chem 21:11323–11329

    CAS  Google Scholar 

  12. Nicolaï A, Sumpter BG, Meunier V (2014) Phys Chem Chem Phys 16:8646–8654

    PubMed  Google Scholar 

  13. Pourazadi E, Haque E, Zhang W, Harris AT, Minett AI (2013) Chem Commun 49:11068–11070

    CAS  Google Scholar 

  14. Mercier G, Klechikov A, Hedenström M, Johnels D, Baburin IA, Seifert G, Mysyk R, Talyzin AV (2015) J Phys Chem C 119:27179–27191

    CAS  Google Scholar 

  15. Chan Y, Hill JM (2011) Nanotechnology 22:305403

    PubMed  Google Scholar 

  16. Haque E, Islam MM, Pourazadi E, Sarkar S, Harris AT, Minett AI, Yanmaz E, Alshehri SM, Ide Y, Wu KCW, Kaneti YV, Yamauchi Y, Hossain MSA (2017) Chem Asian J 12:283–288

    CAS  PubMed  Google Scholar 

  17. Tran TPN, Thakur A, Trinh DX, Dao ATN, Taniike T (2018) Appl Catal A 549:60–67

    CAS  Google Scholar 

  18. Oliveira RL, He W, Klein Gebbink RJM, de Jong KP (2015) Catal Sci Technol 5:1919–1928

    CAS  Google Scholar 

  19. Clark JH, Macquarrie DJ, Mubofu EB (2000) Green Chem 2:53–56

    CAS  Google Scholar 

  20. Karimi B, Enders D (2006) Org Lett 8:1237–1240

    CAS  PubMed  Google Scholar 

  21. Polshettiwar V, Molnár Á (2007) Tetrahedron 63:6949–6976

    CAS  Google Scholar 

  22. Zhang D, Xu J, Zhao Q, Cheng T, Liu G (2014) Chem Cat Chem 6:2998–3003

    CAS  Google Scholar 

  23. El Kadib A, McEleney K, Seki T, Wood TK, Crudden CM (2011) Chem Cat Chem 3:1281–1285

    Google Scholar 

  24. Rana S, Maddila S, Yalagala K, Jonnalagadda SB (2015) Appl Catal A 505:539–547

    CAS  Google Scholar 

  25. Rana S, Maddila S, Jonnalagadda SB (2015) Catal Sci Technol 5:3235–3241

    CAS  Google Scholar 

  26. Rana S, Jonnalagadda SB (2017) Catal Commun 92:31–34

    CAS  Google Scholar 

  27. Navaee A, Salimi A (2015) RSC Adv 5:59874–59880

    CAS  Google Scholar 

  28. Gao Y, Sun W, Yang W, Li Q (2018) J Mater Sci Technol 34:961–968

    Google Scholar 

  29. Wang Q, Kaminska I, Niedziolka-Jonsson J, Opallo M, Li M, Boukherroub R, Szunerits S (2013) Biosens Bioelectron 50:331–337

    CAS  PubMed  Google Scholar 

  30. Turmanova S, Minchev M, Vassilev K, Danev G (2008) J Polym Res 15:309–318

    CAS  Google Scholar 

  31. Adib M, Karimi-Nami R, Veisi H (2016) New J Chem 40:4945–4951

    CAS  Google Scholar 

  32. Veisi H, Hamelian M, Hemmati S (2014) J Mol Catal A Chem 395:25–33

    CAS  Google Scholar 

  33. Thomas HR, Marsden AJ, Walker M, Wilson NR, Rourke JP (2014) Angew Chem Int Ed 53:7613–7618

    CAS  Google Scholar 

  34. Wang M, Jamal R, Wang Y, Yang L, Liu F, Abdiryim T (2015) Nanoscale Res Lett 10:370–380

    PubMed  PubMed Central  Google Scholar 

  35. Tura JM, Regull P, Victori L, De Castellar MD (1988) Surf Interface Anal 11:447–449

    CAS  Google Scholar 

  36. Brant P, Benner LS, Balch AL (1979) Inorg Chem 18:3422–3427

    CAS  Google Scholar 

  37. Koh K, Seo J-E, Lee J, Goswami A, Yoon C, Asefa T (2014) J Mater Chem A 2:20444–20449

    CAS  Google Scholar 

  38. Rana S, Bidita Varadwaj GB, Jonnalagadda SB (2019) RSC Adv 9:13332–13335

    CAS  Google Scholar 

  39. Howard A, Mitchell CEJ, Egdell RG (2002) Surf Sci 515:L504–L508

    CAS  Google Scholar 

  40. Tang Z, Shen S, Zhuang J, Wang X (2010) Angew Chem Int Ed 49:4603–4607

    CAS  Google Scholar 

  41. Shendage SS, Singh AS, Nagarkar JM (2014) Tetrahedron Lett 55:857–860

    CAS  Google Scholar 

  42. Li Y, Fan X, Qi J, Ji J, Wang S, Zhang G, Zhang F (2010) Nano Res 3:429–437

    CAS  Google Scholar 

  43. Putta C, Sharavath V, Sarkar S, Ghosh S (2015) RSC Adv 5:6652–6660

    CAS  Google Scholar 

  44. Blanco M, Mosconi D, Tubaro C, Biffis A, Badocco D, Pastore P, Otyepka M, Bakandritsos A, Liu Z, Ren W, Agnoli S, Granozzi G (2019) Green Chem 21:5238–5247

    CAS  Google Scholar 

  45. Choudhary H, Nishimura S, Ebitani K (2014) J Mater Chem A 2:18687–18696

    CAS  Google Scholar 

Download references

Acknowledgements

TTPN appreciates the scholarship from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Toshiaki Taniike or Shun Nishimura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 439 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, T.P.N., Nguyen, T.N., Taniike, T. et al. Tailoring Graphene Oxide Framework with N- and S- Containing Organic Ligands for the Confinement of Pd Nanoparticles Towards Recyclable Catalyst Systems. Catal Lett 151, 247–254 (2021). https://doi.org/10.1007/s10562-020-03284-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03284-y

Keywords

Navigation