Skip to main content
Log in

A New Sulfonic Acid-Functionalized Organic Polymer Catalyst for the Synthesis of Biomass-Derived Alkyl Levulinates

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Alkyl levulinates are important biobased chemicals with great fuel-blending properties and good reactivity. In this work, a new functionalized nitrogen-containing organic polymer bearing sulfonic acid groups (PDVTA-SO3H) was successfully prepared and studied for the esterification of levulinic acid with alcohols to produce alkyl levulinates. The results showed that this sulfonic acid-functionalized organic polymer possessed high catalytic activity, and the yield of n-butyl levulinate reached 97.4% under the mild conditions. PDVTA-SO3H exhibited strong acidic sites and high stability, and would be well expected to be a potential candidate better than some commercial sulfonic solid catalysts for alkyl levulinates production. The catalyst had been reused without any treatment for five times and the results proved its potential for industrial applications.

Graphic Abstract

A new sulfonic acid-functionalized organic polymer showed high activity in the conversion of biomass derived levulinic acid into alkyl levulinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu XX, Xu Q, Liu JY, Yin DL, Su SP, Ding H (2016) Fuel 164:46–50

    Article  CAS  Google Scholar 

  2. Li H, Riisager A, Saravanamurugan S, Pandey A, Sangwan RS, Yang S, Luque R (2018) ACS Catal 8:148–187

    Article  CAS  Google Scholar 

  3. Jiang L, Guo HW, Li CZ, Zhou P, Zhang ZH (2019) Chem Sci 10:4458–4468

    Article  CAS  Google Scholar 

  4. Song S, Zhang JG, Gozaydin G, Yan N (2019) Angew Chem Int Edit 58:4934–4937

    Article  CAS  Google Scholar 

  5. Pinheiro PF, Chaves DM, da Silva MJ (2019) Cellulose 26:7953–7969

    Article  CAS  Google Scholar 

  6. Farid MAA, Hassan MA, Taufiq-Yap YH, Ibrahim ML, Othman MR, Ali AAM, Shirai Y (2017) Renew Energ 114:638–643

    Article  Google Scholar 

  7. Zhou SL, Jiang DB, Liu XX, Chen YP, Yin DL (2018) RSC Adv 8:3657–3662

    Article  CAS  Google Scholar 

  8. Pasha N, Lingaiah N, Shiva R (2019) Catal Lett 149:2500–2507

    Article  CAS  Google Scholar 

  9. Li XY, Xu R, Yang JX, Nie SX, Liu D, Liu Y, Si CL (2019) Ind Crop Prod 130:184–197

    Article  CAS  Google Scholar 

  10. Luo WH, Bruijnincx PCA, Weckhuysen BM (2014) J Catal 320:33–41

    Article  CAS  Google Scholar 

  11. Lv JK, Rong ZM, Sun LM, Liu CY, Lu AH, Wang Y, Qu JP (2018) Catal Sci Technol 8:975–979

    Article  CAS  Google Scholar 

  12. Hegner J, Pereira KC, DeBoef B, Lucht BL (2010) Tetrahedron Lett 51:2356–2358

    Article  CAS  Google Scholar 

  13. Fernandes DR, Rocha AS, Mai EF, Mota CJA (2012) Teixeira da Silva V. Appl Catal A-Gen 425–426:199–204

    Article  Google Scholar 

  14. Kong XJ, Wu SX, Li XL, Liu JH (2016) Energ Fuels 30:6500–6504

    Article  Google Scholar 

  15. Tejero MA, Ramírez E, Fité C, Tejero J, Cunill F (2016) Appl Catal A-Gen 517:56–66

    Article  CAS  Google Scholar 

  16. Patil CR, Niphadkar PS, Bokade VV, Joshi PN (2014) Catal Commun 43:188–191

    Article  CAS  Google Scholar 

  17. Fernandes DR, Rocha AS, Mai EF, Mota CJA (2011) J Energ Chem 20:18–24

    Google Scholar 

  18. Su DS, Perathoner S, Centi G (2013) Chem Rev 113:5782–5816

    Article  CAS  Google Scholar 

  19. Pasquale G, Vázquez P, Romanelli G, Baronetti G (2012) Catal Commun 18:115–120

    Article  CAS  Google Scholar 

  20. Zhou SL, Liu XX, Lai JH, Zheng M, Liu WZ, Xu Q, Yin DL (2019) Chem Eng J 361:571–577

    Article  CAS  Google Scholar 

  21. Sádaba I, López Granados M, Riisager A, Taarning E (2015) Green Chem 17:4133–4145

    Article  Google Scholar 

  22. Gomes R, Bhanja P, Bhaumik A (2016) J Mol Catal A-Chem 411:110–116

    Article  CAS  Google Scholar 

  23. Gomes R, Bhaumik A (2015) J Solid State Chem 222:7–11

    Article  CAS  Google Scholar 

  24. Mo XH, López DE, Suwannakarn K, Liu Y, Lotero E Jr, GoodwinLu JGCQ (2008) J Catal 254:332–338

    Article  CAS  Google Scholar 

  25. Li N, Wang Q, Ullah S, Zheng XC, Peng ZK, Zheng GP (2019) Catal Commun 129:105755

    Article  CAS  Google Scholar 

  26. Kuwahara Y, Fujitani T, Yamashita H (2014) Catal Today 237:18–28

    Article  CAS  Google Scholar 

  27. Ramli NAS, Zaharudin NH, Amin NAS (2016) J Teknol 79:137–142

    Google Scholar 

  28. Melero JA, Morales G, Iglesias J, Paniagua M, Hernández B, Penedo S (2013) Appl Catal A-Gen 466:116–122

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (21606082), Hunan Provincial Natural Science Foundation of China (2018JJ3334), and China Postdoctoral Science Foundation (2019M662787).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianxiang Liu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yi Tian and Ruoqi Zhang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Zhang, R., Zhao, W. et al. A New Sulfonic Acid-Functionalized Organic Polymer Catalyst for the Synthesis of Biomass-Derived Alkyl Levulinates. Catal Lett 150, 3553–3560 (2020). https://doi.org/10.1007/s10562-020-03253-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03253-5

Keywords

Navigation