Skip to main content
Log in

Theoretical Insights into Intracrystalline Diffusion of Olefins in MTO Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Diffusion process plays a decisive role in MTO reactions over zeolite catalysts. In this work, a theoretical approach was developed for modelling olefins diffusion in two typical zeolites, HZSM-5 and HSAPO-34. Activation barrier between large cavities and channels was determined using Lennard–Jones (LJ) potentials, where electrostatic potential was inserted to account for the induced dipole force that had been ignored in previous studies. Six typical products of MTO were selected as probe molecules. Detailed insights into the variation of activation barrier and diffusivity were obtained via comparative analysis between the two zeolites. Transition from Knudsen diffusion to configurational diffusion was also discriminated, and probe molecules were found to fall basically either in configurational regime or near transition regime. This work provides a submodel for further modeling of the complete reaction system, and ultimately contributes to a rational design of zeolite catalysts.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

d c :

Channel and window diameter inside HZSM-5 and HSAPO-34, Å

d i :

Cage and intersection diameter of HZSM-5 and HSAPO-34, Å

d m :

Molecular kinetic diameter, Å

d o :

Oxygen diameter, Å

d w :

Distance from window/channel wall, Å

D :

Intracrystalline diffusivity, M2/s

D k :

Knudsen diffusion coefficient, m2/s

E a :

Activation Energy, kJ/mole

f :

Orientation probability coefficient

k :

Boltzmann Constant, J/K

L :

Length of channel and window, m

M :

Molecular mass, kg

q :

Charge on hydrogen of bronsted site, eV

r :

Distance between guest molecule and native site, Å

R:

Ideal gas constant, J/mol. K

R c :

Distance between centres of channel/window and nuclei of surface oxygen, Å

R i :

Distance between centres of intersection/cage and nuclei of surface oxygen, Å

T :

Temperature, K

V c :

Potential in window/channel of HSAPO-34 and HZSM-5, kJ/mole

V e :

Electrostatic potential, kJ/mole

V i :

Potential inside cage/intersection of HSAPO-34 and HZSM-5, kJ/mole

Z :

Coordination number of zeolites

α:

Mean molecular polarizability, Å3

ε:

Permittivity of medium, for zeolite it is almost equal to 1

εo :

Vacuum permittivity

μ:

Dipole moment, C. m

\(\overline{V}\) :

Molecular diffusional mean velocity, m/s

εm :

Lennard Jones potential constant for individual molecule, KJ/mole

εmo :

Lennard Jones potential constant for molecule-oxygen pair, KJ/mole

σc :

σI, Pairwise Lennard Jones potential length constant between molecule-oxygen pair inside channel/window, Å

σm :

Lennard Jones length constant, Å

References

  1. Primo A, Garcia H (2014) Chem Soc Rev 43:7548

    Article  CAS  Google Scholar 

  2. Chen JQ, Bozzano A, Glover B, Fuglerud T, Kvisle S (2005) Catal Today 106:103

    Article  CAS  Google Scholar 

  3. Arora SS, Shi Z, Bhan A (2019) ACS Catal 6407.

  4. Liu Y, Kirchberger FM, Müller S, Eder M, Tonigold M, Sanchez-Sanchez M, Lercher JA (2019) Nat Commun 10.

  5. Nasser GA, Muraza O, Nishitoba T, Malaibari Z, Yamani ZH, Al-Shammari TK, Yokoi T (2019) Ind Eng Chem Res 58:60

    Article  CAS  Google Scholar 

  6. Huang X, Li H, Li H, Xiao WD (2017) AlChE J 63:306

    Article  CAS  Google Scholar 

  7. Hwang A, Le TT, Shi Z, Dai H, Rimer JD, Bhan A (2019) J Catal 122.

  8. Shang Y, Wang W, Zhai Y, Song Y, Zhao X, Ma T, Wei J, Gong Y (2019) Microporous Mesoporous Mater 276:173

    Article  CAS  Google Scholar 

  9. Ali MA, Al-Baghli NA, Nisar M, Malaibari ZO, Abutaleb A, Ahmed S (2019) Energy Fuels 33:1458

    Article  CAS  Google Scholar 

  10. Olsbye U, Svelle S, Bjrgen M, Beato P, Janssens TVW, Joensen F, Bordiga S, Lillerud KP (2012) Angew Chem Int Ed 51:5810

    Article  CAS  Google Scholar 

  11. Zhai Y, Zhang S, Shang Y, Song Y, Wang W, Ma T, Zhang L, Gong Y, Xu J, Deng F (2019) Catal Sci Technol 9:659

    Article  CAS  Google Scholar 

  12. Masuda T (2003) Catal Surv Asia 7:133

    Article  CAS  Google Scholar 

  13. Lobo RF, in: Ordered Porous Solids, eds. V. Valtchev, S. Mintova, M. Tsapatsis (Elsevier, Amsterdam, 2009)

  14. Xiao J, Wei J (1992) Chem Eng Sci 47:1143

    Article  CAS  Google Scholar 

  15. Xiao J, Wei J (1992) Chem Eng Sci 47:1123

    Article  CAS  Google Scholar 

  16. Wang C, Li B, Wang Y, Xie Z (2013) J Energy Chem 22:914

    Article  CAS  Google Scholar 

  17. Galliéro G, Boned C, Baylaucq A, Montel F (2006) Phys Rev E 73:061201

    Article  Google Scholar 

  18. Bird RB, Stewart WE, Lightfoot EN (2001) Transport Phenomena. Wiley, New York

    Google Scholar 

  19. Keil FJ, Hinderer J, Garayhi AR (1999) Catal Today 50:637

    Article  CAS  Google Scholar 

  20. Kulprathipanja S (2010) Zeolites in Industrial Separation and Catalysis. WILEY-VCH, Weinheim

    Book  Google Scholar 

  21. Reid RC, Prausnitz JM, Poling BE (1987) The Properties of Gases and Liquids. McGraw-Hill, New York

    Google Scholar 

  22. Rappe AK, Goddard WA (1991) J Phys Chem 95:3358

    Article  CAS  Google Scholar 

  23. Zecchina A, Lamberti C, Bordiga S (1998) Catal Today 41:169

    Article  CAS  Google Scholar 

  24. Zalden P, Song L, Wu X, Huang H, Ahr F, Mücke OD, Reichert J, Thorwart M, Mishra PK, Welsch R, Santra R, Kärtner FX, Bressler C (2018) Nat Commun 9:1–7

    Article  CAS  Google Scholar 

  25. Miller KJ (1990) J Am Chem Soc 112:8533

    Article  CAS  Google Scholar 

  26. Poier PP, Jensen F (2019) J Chem Theory Comput 15:3093

    Article  CAS  Google Scholar 

  27. Mayer A, Åstrand PO (2008) J Phys Chem A 112:1277

    Article  CAS  Google Scholar 

  28. Wu W, Guo W, Xiao W, Luo M (2013) Fuel Process Technol 108:19

    Article  CAS  Google Scholar 

  29. Huang X, Aihemaitijiang D, Xiao WD (2015) Chem Eng J 280:222

    Article  CAS  Google Scholar 

  30. Huang X, Aihemaitijiang D, Xiao WD (2016) Chem Eng J 286:150

    Article  CAS  Google Scholar 

  31. Huang X, Li H, Xiao WD, Chen D (2016) Chem Eng J 299:263

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the 2019 Key Technology Project of Inner Mongolia, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Gang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 315 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, K., Li, XG. & Xiao, WD. Theoretical Insights into Intracrystalline Diffusion of Olefins in MTO Catalysts. Catal Lett 150, 2056–2067 (2020). https://doi.org/10.1007/s10562-020-03136-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03136-9

Keywords

Navigation