Skip to main content
Log in

CO Dissociation Mechanism on Mn-Doped Fe(100) Surface: A Computational Investigation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Periodic density function theory (DFT) and kinetic Monte Carlo (kMC) method are carried out to investigate CO dissociation process on the Mn-doped Fe(100) surface. The energetics information of relevant atomistic processes and adsorption features of relevant species are obtained from DFT calculations. Subsequently, kMC simulations are performed with DFT results employed as database. Simulations show that the energy barriers for CHO and COH formations are 0.09 eV and 0.35 eV larger than that for direct CO dissociation on Mn/Fe(100), respectively. An empty site is created with a CO hydrogenation (CO* + H* → COH* + *, CO* + H* → CHO* + *), while an active site is consumed with a CO direct dissociation (CO* + * → C* + O*). The number of unoccupied active sites can affect the way of CO dissociation. On surfaces with considerable unoccupied active sites, direct CO dissociation mechanism is the preferred route. Under conditions favoring a very low number of unoccupied active sites and a mass of adsorbed H on surfaces, H-assisted CO dissociation via COH will take place.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tao Z, Yang Y, Wan H et al (2007) Effect of manganese on a potassium-promoted iron-based Fischer-Tropsch synthesis catalyst. Catal Lett 114:161–168. https://doi.org/10.1007/s10562-007-9060-6

    Article  CAS  Google Scholar 

  2. Galvis HMT, de Jong KP (2013) Catalysts for production of lower ole fi ns from synthesis gas: a review. ACS Catal 3:2130–2149. https://doi.org/10.1021/cs4003436

    Article  CAS  Google Scholar 

  3. Chen N, Zhang J, Ma Q et al (2016) Hydrothermal preparation of Fe-Zr catalysts for the direct conversion of syngas to light olefins. RSC Adv 6:34204–34211. https://doi.org/10.1039/C5RA27712D

    Article  CAS  Google Scholar 

  4. Mesters C (2016) A selection of recent advances in C1 chemistry. Annu Rev Chem Biomol Eng 7:223–238. https://doi.org/10.1146/annurev-chembioeng-080615-034616

    Article  PubMed  Google Scholar 

  5. Hao X, Wang B, Wang Q, Zhang R, Li D (2016) Insight into both coverage and surface structure dependent CO adsorption and activation on different Ni surfaces from DFT and atomistic. Phys Chem Chem Phys 18:17606–17618. https://doi.org/10.1039/C6CP01689H

    Article  CAS  PubMed  Google Scholar 

  6. Xie J, Torres Galvis HM, Koeken AC, Kirilin A, Dugulan AI, Ruitenbeek M, de Jong KP (2016) Size and promoter effects on stability of carbon-nanofiber-supported iron-based Fischer-Tropsch catalysts. ACS Catal 4:4017–4024. https://doi.org/10.1021/acscatal.6b00321

    Article  CAS  Google Scholar 

  7. de Smit E, de Groot FMF, Blume R et al (2010) The role of Cu on the reduction behavior and surface properties of Fe-based Fischer-Tropsch catalysts. Phys Chem Chem Phys 12:667–680. https://doi.org/10.1039/b920256k

    Article  CAS  PubMed  Google Scholar 

  8. Cheng K, Ordomsky VV, Legras B et al (2015) Sodium-promoted iron catalysts prepared on different supports for high temperature Fischer-Tropsch synthesis. Appl Catal A 502:204–214. https://doi.org/10.1016/j.apcata.2015.06.010

    Article  CAS  Google Scholar 

  9. Soong Y, Rao VUS, Gormley RJ (1991) Temperature-programmed desorption study on manganese-iron catalysts. Appl Catal 78:97–108

    Article  CAS  Google Scholar 

  10. Barrault J, Renard C, Catalyse D (1985) Selective hydrocondensation of carbon monoxide into light olefins with iron-manganese catalysts. Appl Catal 14:133–143

    Article  CAS  Google Scholar 

  11. Xu-Yide HJ, Xu-Longya WQ (1994) A new supported Fe-MnO catalyst for the production of light olefins from syngas. II. Effect of support on the secondary reactions of C2H4. Catal Lett 24:187–195. https://doi.org/10.1007/BF00807389

    Article  Google Scholar 

  12. Cheng K, Virginie M, Ordomsky VV et al (2015) Pore size effects in high-temperature Fischer-Tropsch synthesis over supported iron catalysts. J Catal 328:139–150. https://doi.org/10.1016/j.jcat.2014.12.007

    Article  CAS  Google Scholar 

  13. Xu J, Zhu K, Weng X et al (2013) Carbon nanotube-supported Fe-Mn nanoparticles: a model catalyst for direct conversion of syngas to lower olefins. Catal Today 215:86–94. https://doi.org/10.1016/j.cattod.2013.04.018

    Article  CAS  Google Scholar 

  14. Zhang Y, Ma L, Tu J et al (2015) One-pot synthesis of promoted porous iron-based microspheres and its Fischer-Tropsch performance. Appl Catal A 499:139–145. https://doi.org/10.1016/j.apcata.2015.04.017

    Article  CAS  Google Scholar 

  15. Pennline HW, Schehl R (1986) Slurry phase Fischer-Tropsch synthesis with iron-manganese catalysts. Appl Catal 21:313–328

    Article  CAS  Google Scholar 

  16. Li H, Fu G, Xu X (2012) A new insight into the initial step in the Fischer-Tropsch synthesis: CO dissociation on Ru surfaces. Phys Chem Chem Phys 14:16686–16694. https://doi.org/10.1039/c2cp43176a

    Article  CAS  PubMed  Google Scholar 

  17. Pham TH, Duan X, Qian G et al (2014) CO activation pathways of Fischer-Tropsch synthesis on χ-Fe5C2 (510): direct versus hydrogen-assisted CO dissociation. J Phys Chem C 118:10170–10176. https://doi.org/10.1021/jp502225r

    Article  CAS  Google Scholar 

  18. Elahifard MR, Jigato MP, Niemantsverdriet JW (2012) Direct versus hydrogen-assisted CO dissociation on the Fe (100) surface: a DFT study. ChemPhysChem 13:89–91. https://doi.org/10.1002/cphc.201100759

    Article  CAS  PubMed  Google Scholar 

  19. Ojeda M, Nabar R, Nilekar AU et al (2010) CO activation pathways and the mechanism of Fischer-Tropsch synthesis. J Catal 272:287–297. https://doi.org/10.1016/j.jcat.2010.04.012

    Article  CAS  Google Scholar 

  20. Shetty S, van Santen RA (2010) Hydrogen induced CO activation on open Ru and Co surfaces. Phys Chem Chem Phys 12:6330–6332. https://doi.org/10.1039/c002146f

    Article  CAS  PubMed  Google Scholar 

  21. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 508:508–517

    Article  Google Scholar 

  22. Delley B (2000) From molecules to solids with the From molecules to solids with the DMol 3 approach. J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  23. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  24. Pack JD, Monkhorst HJ (1977) Special points for Brillouin-zone integrations. Phys Rev B 16:1748–1749. https://doi.org/10.1103/PhysRevB.16.1748

    Article  Google Scholar 

  25. Pedersen EØ, Svenum I-H, Blekkan EA (2018) Mn promoted Co catalysts for Fischer-Tropsch production of light olefins—an experimental and theoretical study. J Catal 361:23–32. https://doi.org/10.1016/j.jcat.2018.02.011

    Article  CAS  Google Scholar 

  26. Johnson GR, Werner S, Bell AT (2015) An investigation into the effects of Mn promotion on the activity and selectivity of Co/SiO2 for Fischer-Tropsch synthesis: evidence for enhanced CO adsorption and dissociation. ACS Catal 5:5888–5903. https://doi.org/10.1021/acscatal.5b01578

    Article  CAS  Google Scholar 

  27. Dinse A, Aigner M, Ulbrich M et al (2012) Effects of Mn promotion on the activity and selectivity of Co/SiO 2 for Fischer-Tropsch synthesis. J Catal 288:104–114. https://doi.org/10.1016/j.jcat.2012.01.008

    Article  CAS  Google Scholar 

  28. Belosludov RV, Sakahara S, Yajima K et al (2002) Combinatorial computational chemistry approach as a promising method for design of Fischer-Tropsch catalysts based on Fe and Co. Appl Surf Sci 189:245–252. https://doi.org/10.1016/S0169-4332(01)01018-2

    Article  CAS  Google Scholar 

  29. Cheng J, Hu P, Ellis P et al (2009) A DFT study of the transition metal promotion effect on ethylene chemisorption on Co (0 0 0 1). Surf Sci 603:2752–2758. https://doi.org/10.1016/j.susc.2009.07.012

    Article  CAS  Google Scholar 

  30. Hertzog K (1977) The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem Phys Lett 49:225–232. https://doi.org/10.1007/BF00640289

    Article  Google Scholar 

  31. Tang Q, Hong Q, Liu Z (2009) CO2 fixation into methanol at Cu/ZrO2 interface from first principles kinetic Monte Carlo. J Catal 263:114–122. https://doi.org/10.1016/j.jcat.2009.01.017

    Article  CAS  Google Scholar 

  32. Hess F, Farkas A, Seitsonen AP, Over H (2012) “First-Principles” kinetic Monte Carlo simulations revisited: CO oxidation over RuO 2(110). J Comput Chem 33:757–766. https://doi.org/10.1002/jcc.22902

    Article  CAS  PubMed  Google Scholar 

  33. Prats H, Álvarez L, Illas F, Sayós R (2016) Kinetic Monte Carlo simulations of the water gas shift reaction on Cu(1 1 1) from density functional theory based calculations. J Catal 333:217–226. https://doi.org/10.1016/j.jcat.2015.10.029

    Article  CAS  Google Scholar 

  34. Huang Y, Yu Y (2016) Surface carbon species formation from ethylene decomposition on Pd(100): a first-principles-based kinetic Monte Carlo study. RSC Adv 6:65349–65354. https://doi.org/10.1039/C6RA13977A

    Article  CAS  Google Scholar 

  35. Zhao Y, Li S, Sun Y (2013) CO dissociation mechanism on Cu-doped Fe(100) surfaces. J Phys Chem C 117:24920–24931. https://doi.org/10.1021/jp408932y

    Article  CAS  Google Scholar 

  36. Chen C, Wang Q, Zhang R et al (2016) High coverage CO adsorption and dissociation on the Co(0001) and Co(100) surfaces from DFT and thermodynamics. Appl Catal A 523:209–220. https://doi.org/10.1016/j.apcata.2016.06.013

    Article  CAS  Google Scholar 

  37. Gameel KM, Sharafeldin IM, Allam NK (2019) First-principles descriptors of CO chemisorption on Ni and Cu surfaces. Phys Chem Chem Phys 21:11476–11487. https://doi.org/10.1039/c9cp00881k

    Article  CAS  PubMed  Google Scholar 

  38. Albao MA, Padama AAB (2017) CO adsorption on W(100) during temperature-programmed desorption: a combined density functional theory and kinetic Monte Carlo study. Appl Surf Sci 396:1282–1288. https://doi.org/10.1016/j.apsusc.2016.11.144

    Article  CAS  Google Scholar 

  39. Gameel KM, Sharafeldin IM, Abourayya AU et al (2018) Unveiling CO adsorption on Cu surfaces: new insights from molecular orbital principles. Phys Chem Chem Phys 20:25892–25900. https://doi.org/10.1039/c8cp04253e

    Article  CAS  PubMed  Google Scholar 

  40. Amaya-Roncancio S, Linares DH, Duarte HA, Sapag K (2016) DFT study of hydrogen-assisted dissociation of CO by HCO, COH, and HCOH formation on Fe(100). J Phys Chem C 120:10830–10837. https://doi.org/10.1021/acs.jpcc.5b12014

    Article  CAS  Google Scholar 

  41. Scheijen FJE, Ferré DC, Niemantsverdriet JW (2009) Adsorption and dissociation of CO on body-centered cubic transition metals and alloys: effect of coverage and scaling relations. J Phys Chem C 113:11041–11049. https://doi.org/10.1021/jp811130k

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minhua Zhang.

Ethics declarations

Conflict of interest

There is no conflict of interest about this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2556 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Yu, Y. & Zhang, M. CO Dissociation Mechanism on Mn-Doped Fe(100) Surface: A Computational Investigation. Catal Lett 150, 1618–1627 (2020). https://doi.org/10.1007/s10562-019-03066-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-03066-1

Keywords

Navigation