Skip to main content
Log in

Promotional Effect of Ruthenium Addition to Co/α-Al2O3 Catalyst for Dry Reforming of Methane

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effect of a Ru promoter on the catalytic properties of the Co/α-Al2O3 catalyst in dry reforming of methane (DRM) was investigated. DRM was performed after in situ self-activation by the reactants without a pre-reduction treatment using H2. The CH4 conversion of the catalyst without Ru promotion gradually decreased during DRM, whereas that of the Ru-promoted one slowly increased. The Ru-promoted Co/α-Al2O3 catalyst kept stable conversion of CH4 and CO2 in the sequential reaction consisting of DRM and CO2 treatment. This indicated that the added Ru stabilized the Co sites in the reduced state during DRM. In addition, a small amount of coke was deposited on the Ru-promoted Co/α-Al2O3 catalyst compared to the Co/α-Al2O3 catalyst after DRM. The enhanced stability of the Ru-promoted Co/α-Al2O3 catalyst was ascribed to facile removal of the deposited coke and suppression of metal oxidation. It can be deduced that the Ru promoter provided active sites during DRM, and structural stabilization of Co species.

Graphic Abstract

Addition of a Ru to Co/α-Al2O3 catalyst provided active sites in DRM and structural stabilization of Co species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yıldız I (2018) Compr Energy Syst 1:521–567

    Article  Google Scholar 

  2. Bradford MCJ, Vannice MA (1999) Catal Rev 41:1–42

    Article  CAS  Google Scholar 

  3. Pakhare D, Spivey J (2014) Chem Soc Rev 43:7813–7837

    Article  CAS  PubMed  Google Scholar 

  4. Aramouni NAK, Touma JG, Tarboush BA, Zeaiter J, Ahmad MN (2018) Renew Sustain Energy Rev 82:2570–2585

    Article  CAS  Google Scholar 

  5. Abdullah B, Ghani NAA, Vo DVN (2017) J Clean Prod 162:170–185

    Article  CAS  Google Scholar 

  6. Caprariis B, Filippis P, Palma V, Petrullo A, Ricca A, Ruocco C, Scarsella M (2016) Appl Catal A 517:47–55

    Article  CAS  Google Scholar 

  7. Wang F, Xu L, Yang J, Zhang J, Zhang L, Li H, Zhao Y, Li HX, Wu L, Xu GQ, Chen W (2017) Catal Today 281:295–303

    Article  CAS  Google Scholar 

  8. German ED, Sheintuch M (2017) Surf Sci 656:126–139

    Article  CAS  Google Scholar 

  9. Singh SA, Madras G (2016) Appl Catal A 518:102–114

    Article  CAS  Google Scholar 

  10. Khani W, Shariatinia Z, Bahadoran F (2018) Chem Eng J 299:353–366

    Article  CAS  Google Scholar 

  11. Károlyi J, Németh M, Evangelisti C, Sáfrán G, Schay Z, Horváth A, Somodi F (2018) J Ind Eng Chem 58:189–201

    Article  CAS  Google Scholar 

  12. Koo KY, Eom HJ, Jung UH, Yoon WL (2016) Appl Catal A 525:103–109

    Article  CAS  Google Scholar 

  13. Jabbour K, Hassan NE, Davidson A, Massiani P, Casale S (2015) Chem Eng J 264:351–358

    Article  CAS  Google Scholar 

  14. Theofanidis SA, Galvita VV, Poelman H, Marin GB (2017) Appl Catal B 209:405–416

    Article  CAS  Google Scholar 

  15. Wang Y, Yao L, Wang S, Mao D, Hu C (2018) Fuel Process Technol 169:199–206

    Article  CAS  Google Scholar 

  16. Paksoy AI, Caglayan BS, Aksoylu AE (2015) Appl Catal B 168:164–174

    Article  CAS  Google Scholar 

  17. Giehr A, Maier L, Schunk SA, Deutschmann O (2018) ChemCatChem 10:751–757

    Article  CAS  Google Scholar 

  18. Kim KM, Kwak BS, Im YH, Park NK, Lee TJ, Lee ST, Kang MS (2017) J Ind Eng Chem 51:140–152

    Article  CAS  Google Scholar 

  19. Xin J, Cui H, Cheng Z, Zhou Z (2018) Appl Catal A 554:95–104

    Article  CAS  Google Scholar 

  20. Park JH, Yeo SY, Kang TJ, Heo IJ, Lee KY, Chang TS (2018) Fuel 212:77–87

    Article  CAS  Google Scholar 

  21. Nagaoka K, Takanabe K, Aika KI (2004) Appl Catal A 268:151–158

    Article  CAS  Google Scholar 

  22. Profeti LPR, Ticianelli EA, Assaf EM (2008) Fuel 87:2076–2081

    Article  CAS  Google Scholar 

  23. Whang HS, Choi MS, Lim JK, Kim CY, Heo IJ, Chang TS, Lee HJ (2017) Catal Today 293–294:122–128

    Article  CAS  Google Scholar 

  24. Erdogan B, Arbag H, Yasyerli N (2018) Int J Hydrog Energy 43:1396–1405

    Article  CAS  Google Scholar 

  25. Mirzaei F, Rezaei M, Meshkan F (2014) Chem Eng Tech 37:973–978

    Article  CAS  Google Scholar 

  26. Gonzalez-delaCruz VM, Pereniguez R, Ternero F, Holgado JP, Ccballero A (2012) J Phys Chem C 116:2919–2926

    Article  CAS  Google Scholar 

  27. AlSabban B, Falivene L, Kozlov SM, Aguilar-Tapia A, Ould-Chikh S, Hazemann JL, Cavallo L, Basset JM, Takababe K (2017) Appl Catal B 213:177–189

    Article  CAS  Google Scholar 

  28. Park JH, Yeo SY, Heo IJ, Chang TS (2018) Appl Catal A 562:120–131

    Article  CAS  Google Scholar 

  29. Takanabe K, Nagaoka K, Nariai K, Aika KI (2005) J Catal 232:268–275

    Article  CAS  Google Scholar 

  30. Juan-Juan J, Roman-Martınez MC, Illan-Gomez MJ (2009) Appl Catal A 355:27–32

    Article  CAS  Google Scholar 

  31. Zhao J, Zhou W, Ma J (2014) Int J Hydrog Energy 39:16195–16201

    Article  CAS  Google Scholar 

  32. Liu D, Wang Y, Shi D, Jia X, Wang X, Borgna A, Lau R, Yang Y (2012) Int J Hydrog Energy 37:10135–10144

    Article  CAS  Google Scholar 

  33. Jeong JH, Lee JW, Seo DJ, Seo YT, Yoon WL, Lee DK, Kim DH (2006) Appl Catal A 302:151–156

    Article  CAS  Google Scholar 

  34. Ray K, Sengupta S, Deo G (2017) Fuel Process Technol 156:195–203

    Article  CAS  Google Scholar 

  35. Park JH, Yeo SY, Chang TS (2018) J CO2 Util 26:465–475

    Article  CAS  Google Scholar 

  36. Budiman AW, Song SH, Chang TS, Shin CH, Choi MJ (2012) Catal Surv Asia 16:83–197

    Article  CAS  Google Scholar 

  37. Prieto G, Martinez A, Concepcion P, Moreno-Tost R (2009) J Catal 266:129–144

    Article  CAS  Google Scholar 

  38. Van Steen E, Sewell CS, Makhothe RA, Micklethwaite G, Manstein H, Lange M, O’Connor CT (1996) J Catal 162:220–229

    Article  Google Scholar 

  39. Xiao-Long Y, Wei-Qiang Z, Chun-Gu X, Xu-Mao X, Xin-Yuan M, Bin H (2010) Catal Commun 11:867–870

    Article  CAS  Google Scholar 

  40. Gaur S, Pakhare D, Wu H, Haynes DJ, Spivey J (2012) Energy Fuels 26:1989–1998

    Article  CAS  Google Scholar 

  41. Wei J, Iglesia E (2004) J Phys Chem B 108:4094–4103

    Article  CAS  Google Scholar 

  42. Wang Z, Cao MX, Zhu JH, Hu P (2014) J Catal 311:469–480

    Article  CAS  Google Scholar 

  43. Fouskas A, Kollia M, Kambolis A, Papadopoulou C, Matralis H (2014) Appl Catal A 474:125–134

    Article  CAS  Google Scholar 

  44. Han JW, Kim CY, Park JS, Lee HJ (2014) Chemsuschem 7:451–456

    Article  CAS  PubMed  Google Scholar 

  45. Andre LMS, Johan PB, Lisiane VM, Johannes HB, Krijn PJ, Fábio BN (2014) J Catal 318:67–74

    Article  CAS  Google Scholar 

  46. Pang Y, Zhong A, Xu Z, Jiang W, Gu L, Feng X, Ji W, Au CT (2018) ChemCatChem 10:1–14

    Article  CAS  Google Scholar 

  47. Xu J, Saeys M (2006) J Catal 242:217–226

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Council of Science &Technology (NST)grant bytheKorea government (MSIP) No. CAP-16-05-KIMM).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung-Hyun Park or Tae-Sun Chang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3442 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JH., Chang, TS. Promotional Effect of Ruthenium Addition to Co/α-Al2O3 Catalyst for Dry Reforming of Methane. Catal Lett 149, 3148–3159 (2019). https://doi.org/10.1007/s10562-019-02879-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02879-4

Keywords

Navigation