Skip to main content
Log in

Metal-Free Sustainable Synthesis of Amides via Oxidative Amidation Using Graphene Oxide as Carbocatalyst in Aqueous Medium

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We describe an efficient, clean and metal-free procedure for the synthesis of amides via oxidative amidation of aldehydes with anilines using graphene oxide (GO) as a recyclable catalyst and KBrO3 as a mild oxidant in aqueous medium under microwave irradiation. GO nanosheets were prepared and characterized by XRD, TEM, SEM, and FT-IR, analyses. GO showed high compatibility with KBrO3 in water and offered high TOF value (1.30 × 10−3 mol g−1 min−1). GO oxygen functionalities catalyze the oxidative amidation effectively in mild condition with high recyclability. A plausible mechanism was proposed by the isolating the intermediate.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5

Similar content being viewed by others

References

  1. Greenberg A, Breneman CM (2000) The amide linkage: Structural significance in chemistry. Biochemistry and material science. Wiley-VCH, New York

    Google Scholar 

  2. Cupido T, Tulla-Puche J, Spengler J, Albericio F (2007) Curr Opin Drug Discov Dev 10:768–783

    CAS  Google Scholar 

  3. Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) J Comb Chem 1:55–68

    Article  CAS  PubMed  Google Scholar 

  4. Valeur E, Bradley M (2009) Chem Soc Rev 38:606–631

    Article  CAS  PubMed  Google Scholar 

  5. Yoo WJ, Li CJ (2006) J Am Chem Soc 128:13064–13065

    Article  CAS  PubMed  Google Scholar 

  6. Seo Y, Marks TJ (2008) Org Lett 10:317–319

    Article  CAS  PubMed  Google Scholar 

  7. Ghosh SC, Ngiam JSY, Seayad AM, Tuan DT, Chai CLL, Chen A (2012) J Org Chem 77:8007–8015

    Article  CAS  PubMed  Google Scholar 

  8. Li Y, Jia F, Li Z (2013) Chem Eur J 19:82–86

    Article  CAS  PubMed  Google Scholar 

  9. Whittaker AM, Dong VM (2015) Angew Chem Int Ed 54:1312–1315

    Article  CAS  Google Scholar 

  10. Bhattacharya S, Ghosh P, Basu B (2018) Tetrahedron Lett 59:899–903

    Article  CAS  Google Scholar 

  11. Acosta-Guzmán P, Mateus-Gómez A, Gamba-Sánchez D (2018) Molecules 23:2309–2382

    Article  CAS  Google Scholar 

  12. Mahesh M, Panduranga V, Prabhu G, Kumar R, Venkata Ramana P, Sureshbabu VV (2017) Synth Commun 47:716–721

    Article  CAS  Google Scholar 

  13. Lee J, Jaeyun K, Taeghwan H (2006) Adv Mater 18:2073–2094

    Article  CAS  Google Scholar 

  14. Rodriguez NM, Chambers A, Terry R, Baker K (1995) Langmuir 11:3862–3866

    Article  CAS  Google Scholar 

  15. Zhu Y, Murali S, Cai W, Li X, Suk JW (2010) Adv Mater 22:3906–3924

    Article  CAS  PubMed  Google Scholar 

  16. Loh KP, Qiaoliang B, Goki E, Manish C (2010) Nat Chem 2:1015–1024

    Article  CAS  PubMed  Google Scholar 

  17. Compton OC, SonBinh TN (2010) Small 6:711–723

    Article  CAS  PubMed  Google Scholar 

  18. Jia HP, Dreyer DR, Bielawski CW (2011) Tetrahedron 67:4431–4434

    Article  CAS  Google Scholar 

  19. Dreyer DR, Jia HP, Bielawski CW (2010) Angew Chem Int Ed 49:6813–6816

    CAS  Google Scholar 

  20. Dreyer DR, Jia HP, Todd AD, Geng J, Bielawski CW (2011) Org Biomol Chem 9:7292–7295

    Article  CAS  PubMed  Google Scholar 

  21. Jia HP, Dreyer DR, Bielawski CW (2011) Adv Synth Catal 353:528–532

    Article  CAS  Google Scholar 

  22. Sengupta D, Ghosh S, Basu B (2017) Curr Org Chem 21:834–854

    Article  CAS  Google Scholar 

  23. Olivier SM, Li CJ (2012) Chem Soc Rev 41:1415–1427

    Article  Google Scholar 

  24. Brahmayya M, Suen S-Y, Dai SA (2018) J Taiwan Inst Chem Eng 83:174–183

    Article  CAS  Google Scholar 

  25. Kumari S, Shekhar A, Mungse HP, Khatri OP, Pathak DD (2014) RSC Adv 4:41690–41695

    Article  CAS  Google Scholar 

  26. Mirza-Aghayan M, Ganjbakhsh N, Tavana MM, Boukherroub R (2016) Ultrason Sonochem 32:37–43

    Article  CAS  PubMed  Google Scholar 

  27. Rostamnia S, Doustkhah E, Golchin-Hosseini H, Zeynizadeh B, Xin H, Luque R (2016) Catal. Sci Technol 6:4124–4133

    CAS  Google Scholar 

  28. Soul J-F, Miyamura H, Kobayashi S (2013) Chem Asian J 8:2614–2626

    Article  CAS  Google Scholar 

  29. Dandia A, Sharma A, Parewa V, Kumawat B, Rathore KS, Sharma A (1902) RSC Adv 5(2015):91888–91889

    Google Scholar 

  30. Dandia A, Parewa V, Kumari S, Bansal S, Sharma A (2016) Green Chem 18:2488–2499

    Article  CAS  Google Scholar 

  31. Dandia A, Gupta SL, Indora A, Saini P, Parewa V, Rathore KS (2017) Tetrahedron Lett 58:1170–1175

    Article  CAS  Google Scholar 

  32. Dandia A, Parewa V, Rathore KS (2012) Catal Commun 28:90–94

    Article  CAS  Google Scholar 

  33. Dandia A, Parewa V, Gupta SL, Sharma A, Rathore KS, Sharma A, Jain A (2015) Catal Commun 61:88–91

    Article  CAS  Google Scholar 

  34. Qian Z, Cheng Y, Zhou X, Wu J, Xu G (2013) J Colloid Interface Sci 397:103–107

    Article  CAS  PubMed  Google Scholar 

  35. Paredes JI, Villar-Rodil S, SolisFernandez P, Martinez-Alonso A, Tascon JMD (2009) Langmuir 25:5957–5968

    Article  CAS  PubMed  Google Scholar 

  36. Wei D, Hoseney RC (1995) Cereal Chem 72:58–63

    Google Scholar 

  37. Polshettiwar V, Varma RS (2010) Green Chem 12:743–754

    Article  CAS  Google Scholar 

  38. Chemat F, Esveld DC, Poux M, Di-Martino JL (1998) J Microwa Power Electromagn Energy 33:88–94

    Article  Google Scholar 

  39. Lattes A, Oliveros E, Riviere M, Belzecki C, Mostowicz D, Abramskj W, Piccinni-Leopardi C, Germain GV, Meerssche M (1982) J Am Chem Soc 104:3929–3934

    Article  CAS  Google Scholar 

  40. Wenglowsky S, Hegedus LSJ (1998) J Am Chem Soc 120:12468–12473

    Article  CAS  Google Scholar 

  41. Aube J (1997) Chem Soc Rev 26:269–277

    Article  CAS  Google Scholar 

  42. Leung CH, Voutchkova AM, Crabtree RH, Balcells D, Eisenstein O (2007) Green Chem 9:976–979

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial assistance from the DST-SERB, CSIR, and UGC New Delhi is gratefully acknowledged. We are thankful to the Malaviya National Institute of Technology, Jaipur for the spectral analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anshu Dandia or Vijay Parewa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5229 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dandia, A., Parihar, S., Saini, P. et al. Metal-Free Sustainable Synthesis of Amides via Oxidative Amidation Using Graphene Oxide as Carbocatalyst in Aqueous Medium. Catal Lett 149, 3169–3175 (2019). https://doi.org/10.1007/s10562-019-02878-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02878-5

Keywords

Navigation