Skip to main content
Log in

Effect of Cu-Promotion on the Performance of Molybdenum Sulfide for Hydrotreating of FCC Gasoline

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Copper sulfide (either supported or unsupported) has received poor attention as promoter since this chalcogenide displayed modest hydrotreatment activity. In this sense, was evaluated the potential of sulfide CuMo catalyst in the FCC gasoline hydrotreatment. A MoS2 bulk and the industrial NiMo/Al2O3 catalyst were used as reference. According to the results obtained, the NiMo commercial catalyst had higher HDS, HDN, and HYD activity, but with a significant decrease in the octane number (RON). While the CuMo catalysts showed a lower response towards hydrotreatment, maintaining its octane value. According to the results obtained in the characterizations carried out (XRD, XPS, TPR, physisorption of N2, among others), we propose that copper species could be generating geometric and/or electronic changes in the CuMoS phases, increasing the number of active sites. Additionally, the incorporation of the Cu in the crystalline structure could be modifying its electronic structure, granting a metallic character to the active phase. The work demonstrates the potential of CuMo catalyst for HDT of FCC gasoline.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu J, Zhao Sh, Chen X, Shen B (2016) Fuel 166:467–472

    Article  CAS  Google Scholar 

  2. Nadeina KA, Klimov OV, Pereima VY, Koryakina GI, Danilova IG, Prosvirin IP, Gerasimov EY, Yegizariyan AM, Noskov AS (2016) Catal Today 271:4–15

    Article  CAS  Google Scholar 

  3. Viswanadham N, Negi BS, Garg MO, Sundaram M, Sairam B, Agarwal AK (2007) Fuel 86:1290–1297

    Article  CAS  Google Scholar 

  4. Brunet S, Mey D, Pérot G, Bouchy C, Diehl F (2005) Appl Catal A 278:143–172

    Article  CAS  Google Scholar 

  5. Busca G (2014) Metal catalysts for hydrogenations and dehydrogenations. Heterogeneous catalytic materials. solid state chemistry, surface chemistry and catalytic behaviour, vol 9. Elsevier, Amsterdam, pp 297–343

    Google Scholar 

  6. Chen B, Dingerdissen U, Krauter JGE, Lansink Rotgerink HGJ, Möbus K, Ostgard DJ, Panster P, Riermeier TH, Seebald S, Tacke T, Trauthwein H (2005) Appl Catal A 280:17–46

    Article  CAS  Google Scholar 

  7. Ishutenko D, Mozhaev A, Salnikov V, Nikulshin P (2016) React Kinet Mech Catal 119:615–627

    Article  CAS  Google Scholar 

  8. Nikulshin PA, Tomina NN, Pimerzin AA, Stakheev AY, Mashkovsky IS, Kogan VM (2011) Appl Catal A 393:146–152

    Article  CAS  Google Scholar 

  9. Zhao YF, Yang Y, Mims C, Peden C, Li J, Mei D (2011) J Catal 281:199–211

    Article  CAS  Google Scholar 

  10. Harris S, Chianelli RR (1986) J Catal 98:17–31

    Article  CAS  Google Scholar 

  11. Kibsgaard J, Tuxen A, Knudsen KG, Brorson M, Topsøe H, Lægsgaard EJ (2010) J Catal 272:195–203

    Article  CAS  Google Scholar 

  12. Boukoberinea Y, Hamada B (2016) Arab J Chem 9:S522–S527

    Article  CAS  Google Scholar 

  13. Liu H, Yin C, Li H, Liu B, Li X, Chai Y, Li Y, Liu C (2014) Fuel 129:138–146

    Article  CAS  Google Scholar 

  14. Hernández-Maldonado AJ, Yang RT (2004) J Am Chem Soc 126:992–993

    Article  CAS  PubMed  Google Scholar 

  15. Dai W, Zhou YP, Li SN, Li W, Su W, Sun Y, Zhou L (2006) Ind Eng Chem Res 45:7892–7896

    Article  CAS  Google Scholar 

  16. Meille V, Schulz E, Lemaire M, Vrinat M (1997) J Catal 170:29–36

    Article  CAS  Google Scholar 

  17. Trakarnpruk W, Seentrakoon B (2007) Ind Eng Chem Res 46:1874–1882

    Article  CAS  Google Scholar 

  18. Hatanaka S, Yamada M, Sadakane O (1997) Ind Eng Chem Res 36:1519–1523

    Article  CAS  Google Scholar 

  19. Cheng WC, Kim G, Peters AW, Zhao X, Rajagopalan K, Ziebarth MS, Pereira CJ (1998) Catal Rev Sci Eng 40:39–79

    Article  CAS  Google Scholar 

  20. Leflaive P, Lemberton JL, Pérot G, Mirgain C, Carriat JY, Colin JM (2002) Appl Catal A 227:201–215

    Article  CAS  Google Scholar 

  21. Munaretto A, Ruette F, Sánchez M, Rodtfguez-Arias E (2006) Ciencia 14:83–95

    CAS  Google Scholar 

  22. Chen W, Chen H, Zhu H, Gao Q, Luo J, Wang Y, Zhang S, Zhang K, Wang C, Xiong Y, Wu Y, Zheng X, Chu W, Song L, Wu Z (2014) Small 10:4637–4644

    Article  CAS  PubMed  Google Scholar 

  23. He J, Chen L, Wang F, Liu Y, Chen P, Au CT, Yin SF (2016) ChemSusChem 9:624–630

    Article  CAS  PubMed  Google Scholar 

  24. Scofield J, Hartree-Slater J (1976) J Electron Spectrosc Relat Phenom 8:129–137

    Article  CAS  Google Scholar 

  25. Feduschak T, Akimov A, Morozov M, Uymin M, Zaikovskii V, Prosvirin I, Vosmerikov A, Zhuravkov S, Vlasov V, Kogan V (2016) C R Chim 19:1315–1325

    Article  CAS  Google Scholar 

  26. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation Physical Electronics Division, Eden Prairie

    Google Scholar 

  27. Yin M, Wu CK, Lou Y, Burda C, Koberstein JT, Zhu Y, O’Brien S (2005) J Am Chem Soc 127:9506–9511

    Article  CAS  PubMed  Google Scholar 

  28. Afanasiev P (2006) Appl Catal A 303:110–115

    Article  CAS  Google Scholar 

  29. Rodríguez-Castellón E, Jiménez-López A, Eliche-Quesada D (2008) Fuel 87:1195–1206

    Article  CAS  Google Scholar 

  30. López Cordero R, López Agudo A (2000) Appl Catal A 202:23–35

    Article  Google Scholar 

  31. Scheffer B, Dekker NJJ, Mangnus PJ, Moulijn JA (1990) J Catal 121:31–46

    Article  CAS  Google Scholar 

  32. Mangnus PJ, Riezebos A, Vanlangeveld AD, Moulijin JA (1995) J Catal 151:178–191

    Article  CAS  Google Scholar 

  33. Topsøe NY, Tuxen A, Hinnemann B, Lauritsen JV, Knudsen KG, Besenbacher F, Topsøe H (2011) J Catal 279:337–351

    Article  CAS  Google Scholar 

  34. Yao HC (1981) J Catal 2:440–444

    Article  Google Scholar 

  35. Topsoe NY, Topsoe H (1993) J Catal 139:641–651

    Article  CAS  Google Scholar 

  36. Sobczynski A, Zmierczak W (1991) React Kinet Catal Lett 44:511–516

    Article  CAS  Google Scholar 

  37. Yoosuk B, Hyung Kim J, Song C, Ngamcharussrivichai C, Prasassarakich P (2008) Catal Today 130:14–23

    Article  CAS  Google Scholar 

  38. Wang W, Zhang K, Li L, Wu K, Liu P, Yang Y (2014) Ind Eng Chem Res 53:19001–19009

    Article  CAS  Google Scholar 

  39. Boudart M, Djega-Mariadassou G (1984) Kinetics of heterogeneous catalytic reactions, vol 4. Princeton University Press, Princeton, pp 118–154

    Book  Google Scholar 

Download references

Acknowledgements

Authors thanks PDVSA for the FCC gasoline samples used in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Pinto-Castilla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betancourt, P., Pinto-Castilla, S. Effect of Cu-Promotion on the Performance of Molybdenum Sulfide for Hydrotreating of FCC Gasoline. Catal Lett 149, 2425–2432 (2019). https://doi.org/10.1007/s10562-019-02851-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02851-2

Keywords

Navigation