Skip to main content
Log in

Fabrication of a Novel p–n Heterojunction BiOCl/Ag6Si2O7 Nanocomposite as a Highly Efficient and Stable Visible Light Driven Photocatalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Herein, a visible-light-active BiOCl/Ag6Si2O7 nanocomposite with a strong interfacial interaction p–n heterojunction structure was fabricated via a simple deposition–precipitation method and subsequently investigated as a novel photocatalyst for the first time. The structure, morphology, and optical properties of the prepared samples were thoroughly characterized by field-emission scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, X-ray diffraction, diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The photocatalytic performance was evaluated by monitoring the degradation of methyl orange (MO) and phenol and the photocurrent generated under visible-light irradiation. The BiOCl/Ag6Si2O7 photocatalyst increased significantly its photocatalytic performance compared to the pristine BiOCl and Ag6Si2O7 materials. This enhancement could be ascribed to the strong visible light absorption and the effective separation of the photogenerated electrons (e) and holes (h+) by the internal electrostatic field generated at the junction region. In addition, BiOCl/Ag6Si2O7 showed stable photocurrent over long times and cyclic degradation of MO, thereby demonstrating potential applications in the field of environmental remediation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lin X, Xi Y, Zhao R et al (2017) Construction of C60-decorated SWCNTs (C60-CNTs)/bismuth-based oxide ternary heterostructures with enhanced photocatalytic activity. RSC Adv 7:53847–53854

    Article  CAS  Google Scholar 

  2. Lv D, Zhang D, Pu X et al (2017) One-pot combustion synthesis of BiVO4/BiOCl composites with enhanced visible-light photocatalytic properties. Sep Purif Technol 174:97–103

    Article  CAS  Google Scholar 

  3. Lin X, Xu D, Zhao R et al (2017) Highly efficient photocatalytic activity of g-C3N4 quantum dots (CNQDs)/Ag/Bi2MoO6 nanoheterostructure under visible light. Sep Purif Technol 178:163–168

    Article  CAS  Google Scholar 

  4. Chen X, Chen X, Wang X, Tingzhen LI (2018) Preparation of Nd-Er/ZnO-TiO2 photocatalyst and its photocatalytic degradation effect on acid magenta. Ecol Environ Monitor Three Gorges 3:41–46

    Google Scholar 

  5. Diazdemera Y, Aranda A, Bracco L et al (2017) Formation of secondary organic aerosols from the ozonolysis of dihydrofurans. Atmos Chem Phys 17:1–18. https://doi.org/10.5194/acp-17-2347-2017

    Article  CAS  Google Scholar 

  6. Kaur A, Kansal SK (2016) Bi2WO6 nanocuboids: an efficient visible light active photocatalyst for the degradation of levofloxacin drug in aqueous phase. Chem Eng J 302:194–203

    Article  CAS  Google Scholar 

  7. Lin X, Xu D, Jiang S et al (2017) Graphitic carbon nitride nanocrystals decorated AgVO3 nanowires with enhanced visible-light photocatalytic activity. Catal Commun 89:96–99

    Article  CAS  Google Scholar 

  8. Fu Y, Liu C, Zhu C et al (2018) High-performance NiO/g-C3N4 composites for visible-light-driven photocatalytic overall water splitting. Inorg Chem Front 106:409–417

    Google Scholar 

  9. Akimov AV, Neukirch AJ, Prezhdo OV (2013) ChemInform abstract: theoretical insights into photoinduced charge transfer and catalysis at oxide interfaces. Chem Rev 113:4496–4565

    Article  CAS  Google Scholar 

  10. Bing Y, Li Q, Iwai H et al (2011) Hydrogen production using zinc-doped carbon nitride catalyst irradiated with visible light. Sci Technol Adv Mater 12:034401

    Article  Google Scholar 

  11. Wang X, Chen X, Thomas A et al (2010) Metal-containing carbon nitride compounds: a new functional organic–metal hybrid material. Adv Mater 21:1609–1612

    Article  Google Scholar 

  12. Liu Q, Zhang J (2013) Graphene supported Co-g-C3N4 as a novel metal–macrocyclic electrocatalyst for the oxygen reduction reaction in fuel cells. Langmuir 29:3821–3828

    Article  CAS  Google Scholar 

  13. Zhang W, Wang Y, Wang Z et al (2010) Highly efficient and noble metal-free NiS/CdS photocatalysts for H2 evolution from lactic acid sacrificial solution under visible light. Chem Commun 46:7631–7633

    Article  CAS  Google Scholar 

  14. Yang G, Ding H, Chen D et al (2018) Construction of urchin-like ZnIn2S4-Au-TiO2 heterostructure with enhanced activity for photocatalytic hydrogen evolution. Appl Catal B 234:260–267

    Article  CAS  Google Scholar 

  15. Ye L, Liu J, Jiang Z et al (2013) Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Appl Catal B 142–143:1–7

    Google Scholar 

  16. Cao J, Xu B, Luo B et al (2011) Novel BiOI/BiOBr heterojunction photocatalysts with enhanced visible light photocatalytic properties. Catal Commun 13:63–68

    Article  CAS  Google Scholar 

  17. Lin X, Xu D, Xi Y et al (2017) Construction of leaf-like g-C3N4/Ag/BiVO4 nanoheterostructures with enhanced photocatalysis performance under visible-light irradiation. Colloids Surf A 513:117–124

    Article  CAS  Google Scholar 

  18. Malligavathy M, Padiyan DP (2018) Phase purity analysis and optical studies of Bi2O3 nanoparticles suitable for photocatalytic activity. Int J Nanosci 17(3):1760040

    Article  CAS  Google Scholar 

  19. Li Y, Liu J, Huang X, Li G (2007) Hydrothermal synthesis of Bi2WO6 uniform hierarchical microspheres. Cryst Growth Des 7:1350–1355

    Article  Google Scholar 

  20. Dunkle SS, Helmich RJ, Suslick KS (2009) BiVO4 as a visible-light photocatalyst prepared by ultrasonic spray pyrolysis. J Phys Chem C 113:11980–11983

    Article  CAS  Google Scholar 

  21. Zou ZG, Ye JH, Arakawa H (2001) Substitution effects of In3+ by Fe3+ on photocatalytic and structural properties of Bi2InNbO7 photocatalysts. J Mol Catal A 168:289–297

    Article  CAS  Google Scholar 

  22. Henle J, Simon P, Frenzel A et al (2007) Nanosized BiOX (X = Cl, Br, I) particles synthesized in reverse microemulsions. Chem Mater 19:366–373

    Article  CAS  Google Scholar 

  23. Cao J, Xu B, Lin H et al (2012) Novel Bi2S3-sensitized BiOCl with highly visible light photocatalytic activity for the removal of rhodamine B. Catal Commun 26:204–208

    Article  CAS  Google Scholar 

  24. Peng H, Chan CK, Meister S et al (2015) Shape evolution of layer-structure bismuth oxychloride nanostructures via low-temperature chemical vapor transport. Chem Mater 21:247–252

    Article  Google Scholar 

  25. Duo F, Wang Y, Mao X et al (2015) A BiPO4/BiOCl heterojunction photocatalyst with enhanced electron-hole separation and excellent photocatalytic performance. Appl Surf Sci 340:35–42

    Article  CAS  Google Scholar 

  26. Zuo Y, Wang C, Sun Y, Cheng J (2015) Preparation and photocatalytic properties of BiOCl/Bi2MoO6 composite photocatalyst. Mater Lett 139:149–152

    Article  CAS  Google Scholar 

  27. Xie T, Xu L, Liu C et al (2014) Magnetic composite BiOCl-SrFe12O19: a novel p-n type heterojunction with enhanced photocatalytic activity. Dalton Trans 43:2211–2220

    Article  CAS  Google Scholar 

  28. Wang XJ, Wang Q, Li FT et al (2013) Novel BiOCl–C3N4 heterojunction photocatalysts: In situ preparation via an ionic-liquid-assisted solvent-thermal route and their visible-light photocatalytic activities. Chem Eng J 234:361–371

    Article  CAS  Google Scholar 

  29. Chen H, Chen N, Gao Y, Feng C (2018) Photocatalytic degradation of methylene blue by magnetically recoverable Fe3O4/Ag6Si2O7 under simulated visible light. Powder Technol 326:247–254

    Article  CAS  Google Scholar 

  30. Qin J, Chen N, Feng C et al (2018) Fabrication of a narrow-band-gap Ag6Si2O7/BiOBr composite with high stability and enhanced visible-light photocatalytic activity. Catal Lett 148:2777–2788

    Article  CAS  Google Scholar 

  31. Lou Z, Huang B, Wang Z et al (2015) Ag6Si2O7: a silicate photocatalyst for the visible region. Cheminform 45:3873–3875. https://doi.org/10.1021/cm500657n

    Article  CAS  Google Scholar 

  32. He Z, Shi Y, Gao C et al (2014) BiOCl/BiVO4 p–n heterojunction with enhanced photocatalytic activity under visible-light irradiation. J Phys Chem C 118:389–398

    Article  CAS  Google Scholar 

  33. Chen H, Chen N, Feng C, Gao Y (2018) Synthesis of a novel narrow-band-gap iron(II,III) oxide/titania/silver silicate nanocomposite as a highly efficient and stable visible light-driven photocatalyst. J Colloid Interface Sci 515:119–128

    Article  CAS  Google Scholar 

  34. Shi L, Ma J, Yao L et al (2018) Enhanced photocatalytic activity of Bi12O17Cl2 nano-sheets via surface modification of carbon nanotubes as electron carriers. J Colloid Interface Sci 519:1 293–301

    Article  Google Scholar 

  35. Ai Z, Ho W, Lee S, Zhang L (2009) Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light. Environ Sci Technol 43:4143–4150

    Article  CAS  Google Scholar 

  36. Mehraj O, Mir NA, Pirzada BM et al (2014) In-situ anion exchange synthesis of AgBr/Ag2 CO3 hybrids with enhanced visible light photocatalytic activity and improved stability. J Mol Catal A 395:16–24

    Article  CAS  Google Scholar 

  37. Shang J, Hao W, Lv X et al (2014) Bismuth oxybromide with reasonable photocatalytic reduction activity under visible light. ACS Catal 4:954–961

    Article  CAS  Google Scholar 

  38. Xiao X, Jiang J, Zhang L (2013) Selective oxidation of benzyl alcohol into benzaldehyde over semiconductors under visible light: the case of Bi12O17Cl2 nanobelts. Appl Catal B 142–143:487–493

    Article  Google Scholar 

  39. Li Y, Wang J, Yao H et al (2011) Efficient decomposition of organic compounds and reaction mechanism with BiOI photocatalyst under visible light irradiation. J Mol Catal A 334:116–122

    Article  CAS  Google Scholar 

  40. Ma J, Ding J, Yu L et al (2015) BiOCl dispersed on NiFe–LDH leads to enhanced photo-degradation of Rhodamine B dye. Appl Clay Sci 109–110:76–82

    Article  Google Scholar 

  41. Pirhashemi M, Habibi-Yangjeh A (2017) Ultrasonic-assisted preparation of plasmonic ZnO/Ag/Ag2WO4 nanocomposites with high visible-light photocatalytic performance for degradation of organic pollutants. J Colloid Interface Sci 491:216–229

    Article  CAS  Google Scholar 

  42. Sahu IP, Bisen DP, Brahme N (2015) Luminescence properties of green emitting Ca2MgSi2O7:Eu2+ phosphor by solid state reaction method. Phys Proc 76:80–85

    Article  CAS  Google Scholar 

  43. Nayak MC, Isloor AM, Moslehyani A, Ismail AF (2017) Preparation and characterization of PPSU membranes with BiOCl nanowafers loaded on activated charcoal for oil in water separation. J Taiwan Inst Chem Eng 77:293–301

    Article  Google Scholar 

  44. Tripathi GK, Kurchania R (2016) Effect of doping on structural, optical and photocatalytic properties of bismuth oxychloride nanomaterials. J Mater Sci Mater Electron 27:5079–5088

    Article  CAS  Google Scholar 

  45. Yang Q, Zhai Y, Li X, Li H (2018) Synthesis of Fe3O4/Pr-BiOCl/Luffa composites with enhanced visible light photoactivity for organic dyes degradation. Mater Res Bull 106:409–417

    Article  CAS  Google Scholar 

  46. Jia X, Cao J, Lin H et al (2016) Novel I-BiOBr/BiPO4 heterostructure: synergetic effects of I-ion doping and the electron trapping role of wide-band-gap BiPO4 nanorods. RSC Adv 6:55755–55763

    Article  CAS  Google Scholar 

  47. Zeng C, Hu Y, Huang H (2017) BiOBr0.75I0.25/BiOIO3 as a novel heterojunctional photocatalyst with superior visible-light-driven photocatalytic activity in removing diverse industrial pollutants. ACS Sustain Chem Eng 5:3897–3905

    Article  CAS  Google Scholar 

  48. Vadivel S, Keerthi P, Vanitha M et al (2014) Solvothermal synthesis of Sm-doped BiOBr/RGO composite as an efficient photocatalytic material for methyl orange degradation. Mater Lett 128:287–290

    Article  CAS  Google Scholar 

  49. Li T, He Y, Lin H et al (2013) Synthesis, characterization and photocatalytic activity of visible-light plasmonic photocatalyst AgBr-SmVO4. Appl Catal B 138:95–103

    Article  Google Scholar 

  50. Kim J, Lee CW, Choi W (2010) Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light. Environ Sci Technol 44:6849–6854

    Article  CAS  Google Scholar 

  51. Cao J, Xu B, Luo B et al (2011) Preparation, characterization and visible-light photocatalytic activity of AgI/AgCl/TiO2. Appl Surf Sci 257:7083–7089

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (NSFC) (Nos. 20407129, 51578519), Major Science and Technology Program for Water Pollution Control and Treatment (No. 2017ZX07202002) and the Fundamental Research Funds for the Central Universities (No. 2652017190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, J., Chen, N., Feng, C. et al. Fabrication of a Novel p–n Heterojunction BiOCl/Ag6Si2O7 Nanocomposite as a Highly Efficient and Stable Visible Light Driven Photocatalyst. Catal Lett 149, 891–903 (2019). https://doi.org/10.1007/s10562-018-2631-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2631-x

Keywords

Navigation