Skip to main content
Log in

In Situ Generation of Cu0 Supported on TiO2 Aerogel as a Catalyst for the Vapour Phase Hydrogenation of Nitrobenzene to Aniline

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This study is first to demonstrate a new strategy to synthesize Cu nanoparticles (NPs) supported on TiO2 (Cu@TiO2) catalyst towards the vapor phase hydrogenation of nitrobenzene. The experimental design involved the four different loadings (10, 15, 20 and 30 wt%) of Cu NPs onto the TiO2 aerogel to produce a complex with high surface area and increased pore volume. The developed catalysts were characterized using N2 physisorption analysis, powder-XRD studies, H2-temperature programmed reduction, field emission scanning electron microscopy–EDAX, high resolution transmission electron microscopy and X-ray photoelectron spectroscopy. The characterisation results specified that the surface area, mesoporosity, the effective dispersion of Cu nanoparticles onto the TiO2 support exerted a significant influence on their catalytic activities. Further, it was found that the resulted process led to the complete in situ reduction of Cu2+ to Cu0, and fine dispersion of Cu0 NPs on the surface of TiO2. Thus, no further pre-reduction of the catalyst was required. The optimized 20 wt% Cu@TiO2 catalyst achieved about 94% nitrobenzene conversion with maximum aniline selectivity (> 98%), with enhanced stability where the catalyst was found to be active up to 15 h of continuous catalytic reactions. From the study, it is found that this approach is promising and provides insights into the fundamental understanding on the importance of aerogel materials as versatile catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Harraz FA, El-Hout SE, Killa HM, Ibrahim IA (2012) J Catal 286:184

    Article  CAS  Google Scholar 

  2. Clark A (1953) Ind Eng Chem Res 45(7):1476

    Article  CAS  Google Scholar 

  3. Wang Y, Shen Y, Zhao Y, Lv J, Wang S, Ma X (2015) ACS Catal 5(10):6200

    Article  CAS  Google Scholar 

  4. Gurav JL, Jung IK, Park HH, Kang ES, Nadargi DYJ (2010) Nanomaterials 2010:23

    Google Scholar 

  5. Pajonk GM (1991) Appl Catal 72(2):217

    Article  CAS  Google Scholar 

  6. Armor JN, Carlson EJ, Zambri PM (1985) Appl Catal 19(2):339

    Article  CAS  Google Scholar 

  7. Kistler SS, Swann S, Appel EG (1934) Ind Eng Chem Res 26(4):388

    Article  CAS  Google Scholar 

  8. Liu K, Zhang Z, Lu N, Dong B (2018) ACS Sustain Chem Eng 6(2):1934–1940

    Article  CAS  Google Scholar 

  9. Guchhait SK, Chandgude AL, Priyadarshani G (2012) J Org Chem 77(9):4438–4444

    Article  CAS  PubMed  Google Scholar 

  10. Dag A, Mert H, Dervaux B, Du Prez FE, Tunca U, Hizal G (2007) Des Monomers Polym 10(5):425–438

    CAS  Google Scholar 

  11. Mahata N, Cunha AF, Órfão JJM, Figueiredo JL (2008) Appl Catal A 351(2):204

    Article  CAS  Google Scholar 

  12. Lin W, Cheng H, Ming J, Yu Y, Zhao F (2012) J Catal 291:149

    Article  CAS  Google Scholar 

  13. Sangeetha P, Shanthi K, Rao KSR, Viswanathan B, Selvam P (2009) Appl Catal A 353(2):160

    Article  CAS  Google Scholar 

  14. Varkolu M, Velpula V, Pochamoni R, Muppala AR, Burri DR, Kamaraju SRR (2016) Appl Petrochem Res 6(1):15

    Article  CAS  Google Scholar 

  15. Nagaraja BM, Shin C-H, Jung K-D (2013) Appl Catal A 467:211

    Article  CAS  Google Scholar 

  16. Kainthla I, Babu GVR, Bhanushali JT, Keri RS, Rao KSR, Nagaraja BM (2017) New J Chem 41(10):4173

    Article  CAS  Google Scholar 

  17. Holtz RD, de Oliveira SB, Fraga MA, Rangel MC (2008) Appl Catal A 350:79

    Article  CAS  Google Scholar 

  18. Tanasoi S, Tanchoux N, Urdă A, Tichit D, Săndulescu I, Fajula F, Marcu I.-C. (2009) Appl Catal A 363:135

    Article  CAS  Google Scholar 

  19. Wagner CD, Zatko DA, Raymond RH (1980) Anal Chem 52(9):1445

    Article  CAS  Google Scholar 

  20. Rather RA, Singh S, Pal B (2017) J Catal 346:1

    Article  CAS  Google Scholar 

  21. Biesinger MC, Lau LW, Gerson AR, Smart RSC (2010) Appl Surf Sci 257(3):887

    Article  CAS  Google Scholar 

  22. Nagaraja BM, Padmasri AH, Raju BD, Rao KSR (2011) Int J Hydrog Energy 36(5):3417

    Article  CAS  Google Scholar 

  23. Mohan V, Pramod CV, Suresh M, Reddy KHP, Raju BD, Rao KSR (2012) Catal Commun 18:89

    Article  CAS  Google Scholar 

  24. Turáková M, Králik M, Lehocký P, Pikna Ľ, Smrčová M, Remeteiová D, Hudák A (2014) Appl Catal A 476:103

    Article  CAS  Google Scholar 

  25. Sangeetha P, Seetharamulu P, Shanthi K, Narayanan S, Rao KSR (2007) J Mol Catal A 273:244

    Article  CAS  Google Scholar 

  26. Mahata A, Rai RK, Choudhuri I, Singh SK, Pathak B (2014) Phys Chem Chem Phys 16(47):26365

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank SERB, Department of Science & Technology, Government of India, for financial support through the Young Scientist Start up Grant SB/FT/CS-044/2014 and Nano mission, SR/NM/NS-20/2014. The authors would also like to acknowledge Prof. Geetha R. Balakrishna, Director, CNMS, Jain University, Bangalore, Karnataka, India and the Head of the Department, C&FC division, CSIR-IICT, Hyderabad, India for their support for this research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arvind H. Jadhav or Bhari Mallanna Nagaraja.

Ethics declarations

Conflict of interest

All the authors state that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kainthla, I., Gurram, V.R.B., Bhanushali, J.T. et al. In Situ Generation of Cu0 Supported on TiO2 Aerogel as a Catalyst for the Vapour Phase Hydrogenation of Nitrobenzene to Aniline. Catal Lett 148, 2891–2900 (2018). https://doi.org/10.1007/s10562-018-2481-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2481-6

Keywords

Navigation