Skip to main content

Advertisement

Log in

Precious Metal Doped Ni–Mg/Ceria–Zirconia Catalysts for Methane Conversion to Syngas by Low Temperature Bi-reforming

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Low temperature (450–600 °C) bi-reforming of methane was studied over platinum (0.16 wt%) or palladium (0.13 wt%) along with nickel (1.4 wt%) and magnesium (1.0 wt%) immobilized onto a ceria–zirconia support (termed 0.16Pt and 0.13Pd). Bi-reforming studies using a feed ratio of 3:1:2 for CH4:CO2:H2O, respectively, showed that the H2:CO ratio neared the desired ratio of 2 between 500 and 600 °C for the 0.16Pt catalyst and consistent with bi-reforming at more traditional conditions. This H2:CO ratio was desirable (near 2) compared to dry or steam reforming alone, as well as to other CH4:CO2:H2O ratios. Reaction studies showed that CH4 conversion decreased with increasing GHSV (68,000–272,000 h−1) at 500 °C and increased with increasing temperature at a GHSV of 136,000 h−1 for both catalyst systems. However, the Pt-based catalyst had more consistent H2:CO ratios between 1.9 and 2.2 (T ≥ 500 °C) compared to its Pd counterpart (H2:CO ratios of 1.6–3.0), which was linked to the increased rWGS activity and stronger CO2 adsorption. This study indicates reasonable CH4 conversions and H2:CO ratio near 2 can be achieved despite operating in this low temperature regime and may enable intensified processes for the conversion of methane to value-added products.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Methane Emissions (2010) EPA. http://www.epa.gov/climatechange/ghgemissions/gases/ch4.html. Accessed 07 July 2014

  2. Song C, Pan W (2004) Tri-reforming of methane: a novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios. Catal Today 98(4):463–484

    Article  CAS  Google Scholar 

  3. Pan W, Zheng J, Song C (2002) Catalytic Tri-reforming of methane using flue gas from fossil fuel-based power plants. Fuel Chem Div Prep 47(1):262–264

    CAS  Google Scholar 

  4. Walker DM, Pettit S, Wolan JT, Kuhn JN (2012) Synthesis gas production to desired hydrogen to carbon monoxide ratios by tri-reforming of methane using Ni-MgO-(Ce,Zr)O2 Catalysts. Appl Catal A 445:61–68

    Article  Google Scholar 

  5. Rostrup-Nielsen JR, Sehested J, Nørskov JK (2002) Hydrogen and synthesis gas by steam- and CO2 reforming. Adv Catal 47:65–139. https://doi.org/10.1016/S0360-0564(02)47006-X

    CAS  Google Scholar 

  6. Damyanova S, Pawelec B, Arishtirova K, Huerta MVM, Fierro JLG (2009) The effect of CeO2 on the surface and catalytic properties of Pt/CeO2–ZrO2 catalysts for methane dry reforming. Appl Catal B 89(1–2):149–159. https://doi.org/10.1016/j.apcatb.2008.11.035

    Article  CAS  Google Scholar 

  7. Baudouin D, Candy J-P, Rodemerck U, Krumeich F, Veyre L, Webb PB, Thieuleux C, Copéret C (2014) Preparation of Sn-doped 2–3 nm Ni nanoparticles supported on SiO2 via surface organometallic chemistry for low temperature dry reforming catalyst: the effect of tin doping on activity, selectivity and stability. Catal Today 235(0):237–244. https://doi.org/10.1016/j.cattod.2014.03.014

    Article  CAS  Google Scholar 

  8. Lemonidou AA, Vasalos IA (2002) Carbon dioxide reforming of methane over 5 wt.% Ni/CaO-Al2O3 catalyst. Appl Catal A 228(1–2):227–235. https://doi.org/10.1016/S0926-860X(01)00974-7

    Article  CAS  Google Scholar 

  9. Zhang S, Muratsugu S, Ishiguro N, Tada M (2013) Ceria-doped Ni/SBA-16 catalysts for dry reforming of methane. ACS Catal 3(8):1855–1864

    Article  Google Scholar 

  10. Courson C, Makaga E, Petit C, Kiennemann A (2000) Development of Ni catalysts for gas production from biomass gasification. Reactivity in steam- and dry-reforming. Catal Today 63(2–4):427–437. https://doi.org/10.1016/S0920-5861(00)00488-0

    Article  CAS  Google Scholar 

  11. Choudhary VR, Uphade BS, Mamman AS (1998) Simultaneous steam and CO2 reforming of methane to syngas over NiO/MgO/SA-5205 in presence and absence of oxygen. Appl Catal A 168(1):33–46. https://doi.org/10.1016/S0926-860X(97)00331-1

    Article  CAS  Google Scholar 

  12. Laosiripojana N, Assabumrungrat S (2005) Methane steam reforming over Ni/Ce–ZrO2 catalyst: Influences of Ce–ZrO2 support on reactivity, resistance toward carbon formation, and intrinsic reaction kinetics. Appl Catal A 290(1–2):200–211. https://doi.org/10.1016/j.apcata.2005.05.026

    Article  CAS  Google Scholar 

  13. Nakagawa K, Anzai K, Matsui N, Ikenaga N, Suzuki T, Teng Y, Kobayashi T, Haruta M (1998) Effect of support on the conversion of methane to synthesis gas over supported iridium catalysts. Catal Lett 51(3–4):163–167. https://doi.org/10.1023/A:1019065824331

    Article  CAS  Google Scholar 

  14. Yamaguchi A, Iglesia E (2010) Catalytic activation and reforming of methane on supported palladium clusters. J Catal 274:52–63

    Article  CAS  Google Scholar 

  15. Olah GA (2013) The Role of catalysis in replacing oil by renewable methanol using carbon dioxide capture and recycling (CCR). Catal Lett 143(10):983–987

    Article  CAS  Google Scholar 

  16. Bradford MCJ, Vannice MA (1999) CO2 reforming of CH4. Catal Rev 41:1–42

    Article  CAS  Google Scholar 

  17. Kumar N, Roy A, Wang Z, L’Abbate EM, Haynes D, Shekhawat D, Spivey JJ (2016) Bi-reforming of methane on Ni-based pyrochlore catalyst. Appl Catal A 517:211–216. https://doi.org/10.1016/j.apcata.2016.03.016

    Article  CAS  Google Scholar 

  18. Olah GA, Goeppert A, Czaun M, Mathew T, May RB, Prakash GKS (2015) Single step Bi-reforming and oxidative Bi-reforming of methane (natural gas) with steam and carbon dioxide to metgas (CO-2H2) for methanol synthesis: self-sufficient effective and exclusive oxygenation of methane to methanol with oxygen. J Am Chem Soc 137(27):8720–8729. https://doi.org/10.1021/jacs.5b02029

    Article  CAS  Google Scholar 

  19. Olah GA, Goeppert A, Czaun M, Prakash GKS (2013) Bi-reforming of methane from any source with steam and carbon dioxide exclusively to metgas (CO–2H2) for methanol and hydrocarbon synthesis. J Am Chem Soc 135(2):648–650. https://doi.org/10.1021/ja311796n

    Article  CAS  Google Scholar 

  20. Elsayed NH, Roberts NRM, Joseph B, Kuhn JN (2015) Low temperature dry reforming of methane over Pt–Ni–Mg/ceria–zirconia catalysts. Appl Catal B 179(0):213–219. https://doi.org/10.1016/j.apcatb.2015.05.021

    Article  CAS  Google Scholar 

  21. Elsayed NH, Roberts NM, Joseph B, Kuhn J (2015) Comparison of Pd–Ni–Mg/ceria–zirconia and Pt–Ni–Mg/ceria–zirconia catalysts for syngas production via low temperature reforming of model biogas. Top Catal. https://doi.org/10.1007/s11244-015-0513-7

    Google Scholar 

  22. Li Y, Wang Y, Zhang X, Mi Z (2008) Thermodynamic analysis of autothermal steam and CO2 reforming of methane. Int J Hydrog Energy 33(10):2507–2514. https://doi.org/10.1016/j.ijhydene.2008.02.051

    Article  CAS  Google Scholar 

  23. Simakov DSA, Wright MM, Ahmed S, Mokheimer EMA, Roman-Leshkov Y (2015) Solar thermal catalytic reforming of natural gas: a review on chemistry, catalysis and system design. Catal Sci Tech 5(4):1991–2016. https://doi.org/10.1039/C4CY01333F

    Article  CAS  Google Scholar 

  24. Simakov DS, Luo HY, Román-Leshkov Y (2015) Ultra-low loading Ru/γ-Al2O3: a highly active and stable catalyst for low temperature solar thermal reforming of methane. Appl Catal B 168:540–549

    Article  Google Scholar 

  25. Angeli SD, Turchetti L, Monteleone G, Lemonidou AA (2016) Catalyst development for steam reforming of methane and model biogas at low temperature. Appl Catal B 181:34–46. https://doi.org/10.1016/j.apcatb.2015.07.039

    Article  CAS  Google Scholar 

  26. Rossignol S, Gérard F, Duprez D (1999) Effect of the preparation method on the properties of zirconia-ceria materials. J Mater Chem 9(7):1615–1620

    Article  CAS  Google Scholar 

  27. Balducci G, Kaspar J, Fornasiero P, Graziani M, Islam MS, Gale JD (1997) Computer simulation studies of bulk reduction and oxygen migration in CeO2-ZrO2 solid solutions. J Phys Chem B 101:1750–1753

    Article  CAS  Google Scholar 

  28. Grieshammer S (2017) Defect interactions in the CeO2–ZrO2–Y2O3 solid solution. J Phys Chem C 121:15078–15084

    Article  CAS  Google Scholar 

  29. Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301:935–938

    Article  CAS  Google Scholar 

  30. Lee J, Ryou Y, Chan X, Kim TJ, Kim DH (2016) How Pt interacts with CeO2 under the reducing and oxidizing environments at elevated temperature: the origin of improved thermal stability of Pt/CeO2 compared to CeO2. J Phys Chem C 120:25870–25879

    Article  CAS  Google Scholar 

  31. Si R, Flytzani-Stephanopoulos M (2008) Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water–gas shift reaction. Angew Chem Int Ed 47:2884–2887

    Article  CAS  Google Scholar 

  32. Kamiuchi N, Haneda M, Ozawa M (2013) CO oxidation over Pt/Ce–Zr oxide catalysts with low content of platinum and cerium components. Catal Today 201:79–84

    Article  CAS  Google Scholar 

  33. Devi KS, Jayashree S (2013) Modified ceria as a substitute for sulfuric acid in the liquid phase nitration of toluene. React Kinet Mech Catal 108(1):183–192

    Article  Google Scholar 

  34. Roh H-S, Jun K-W, Dong W-S, Chang J-S, Park S-E, Joe Y-I (2002) Highly active and stable Ni/Ce–ZrO2 catalyst for H2 production from methane. J Mol Catal A 181(1–2):137–142. https://doi.org/10.1016/S1381-1169(01)00358-2

    Article  CAS  Google Scholar 

  35. Dantas SC, Escritori JC, Soares RR, Hori CE (2010) Effect of different promoters on Ni/CeZrO2 catalyst for autothermal reforming and partial oxidation of methane. Chem Eng J 156(2):380–387. https://doi.org/10.1016/j.cej.2009.10.047

    Article  CAS  Google Scholar 

  36. Roland U, Braunschweig T, Roessner F (1997) On the nature of spilt-over hydrogen. J Mol Catal A 127(1–3):61–84. https://doi.org/10.1016/S1381-1169(97)00110-6

    Article  CAS  Google Scholar 

  37. Boaro M, Vicario M, de Leitenburg C, Dolcetti G, Trovarelli A (2003) The use of temperature-programmed and dynamic/transient methods in catalysis: characterization of ceria-based, model three-way catalysts. Cataly Today 77(4):407–417. https://doi.org/10.1016/S0920-5861(02)00383-8

    Article  CAS  Google Scholar 

  38. Rogemond E, Fréty R, Perrichon V, Primet M, Salasc S, Chevrier M, Gauthier C, Mathis F (1997) Preparation of alumina-supported ceria. II. Measurement of ceria surface area after impregnation with platinum or rhodium. J Catal 169(1):120–131. https://doi.org/10.1006/jcat.1997.1667

    Article  CAS  Google Scholar 

  39. Dong W-S, Roh H-S, Jun K-W, Park S-E, Oh Y-S (2002) Methane reforming over Ni/Ce-ZrO2 catalysts: effect of nickel content. Appl Catal A 226(1–2):63–72. https://doi.org/10.1016/S0926-860X(01)00883-3

    Article  CAS  Google Scholar 

  40. Escritori JC, Dantas SC, Soares RR, Hori CE (2009) Methane autothermal reforming on nickel–ceria–zirconia based catalysts. Catal Commun 10(7):1090–1094. https://doi.org/10.1016/j.catcom.2009.01.001

    Article  CAS  Google Scholar 

  41. Giordano F, Trovarelli A, de Leitenburg C, Giona M (2000) A model for the temperature-programmed reduction of low and high surface area ceria. J Catal 193(2):273–282. https://doi.org/10.1006/jcat.2000.2900

    Article  CAS  Google Scholar 

  42. Goguet A, Meunier F, Breen JP, Burch R, Petch MI, Faur Ghenciu A (2004) Study of the origin of the deactivation of a Pt/CeO2 catalyst during reverse water gas shift (RWGS) reaction. J Catal 226(2):382–392. https://doi.org/10.1016/j.jcat.2004.06.011

    Article  CAS  Google Scholar 

  43. Dong W-S, Jun K-W, Roh H-S, Liu Z-W, Park S-E (2002) Comparative study on partial oxidation of methane over Ni/ZrO2, Ni/CeO2 and Ni/Ce–ZrO2 Catalysts. Catal Lett 78(1–4):215–222. https://doi.org/10.1023/A:1014905318290

    Article  CAS  Google Scholar 

  44. Passos FB, de Oliveira ER, Mattos LV, Noronha FB (2005) Partial oxidation of methane to synthesis gas on Pt/CexZr1–xO2 catalysts: the effect of the support reducibility and of the metal dispersion on the stability of the catalysts. Catal Today 101(1):23–30. https://doi.org/10.1016/j.cattod.2004.12.006

    Article  CAS  Google Scholar 

  45. Kumar P, Sun Y, Idem RO (2007) Nickel-based ceria, zirconia, and ceria–zirconia catalytic systems for low-temperature carbon dioxide reforming of methane. Energy Fuel 21(6):3113–3123

    Article  CAS  Google Scholar 

  46. Yu Q, Chen W, Li Y, Jin M, Suo Z (2010) The action of Pt in bimetallic Au–Pt/CeO2 catalyst for water–gas shift reaction. Catal Today 158(3):324–328

    Article  CAS  Google Scholar 

  47. Chilukoti S, Gao F, Anderson BG, Niemantsverdriet JH, Garland M (2008) Pure component spectral analysis of surface adsorbed species measured under real conditions. BTEM-DRIFTS study of CO and NO reaction over a Pd/γ-Al2O3 catalyst. Phys Chem Chem Phys 10(36):5510–5520

    Article  CAS  Google Scholar 

  48. Wu JC, Huang C-W (2010) In situ DRIFTS study of photocatalytic CO2 reduction under UV irradiation. Front Chem Eng China 4(2):120–126

    Article  CAS  Google Scholar 

  49. Jacobs G, Williams L, Graham U, Sparks D, Davis BH (2003) Low-temperature water-gas shift: in-situ drifts-reaction study of a Pt/CeO2 catalyst for fuel cell reformer applications. J Phys Chem B 107(38):10398–10404

    Article  CAS  Google Scholar 

  50. Goguet A, Meunier FC, Tibiletti D, Breen JP, Burch R (2004) Spectrokinetic investigation of reverse water-gas-shift reaction intermediates over a Pt/CeO2 catalyst. J Phys Chem B 108(52):20240–20246

    Article  CAS  Google Scholar 

  51. Wang X, Shi H, Kwak JH, Szanyi J (2015) Mechanism of CO2 hydrogenation on Pd/Al2O3 catalysts: kinetics and transient DRIFTS-MS studies. ACS Catal 5(11):6337–6349

    Article  CAS  Google Scholar 

  52. Wei J, Iglesia E (2004) Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts. J Catal 224:370–383

    Article  CAS  Google Scholar 

  53. Andreeva D, Idakiev V, Tabakova T, Ilieva L, Falaras P, Bourlinos A, Travlos A (2002) Low-temperature water-gas shift reaction over Au/CeO2 catalysts. Catal Today 72(1–2):51–57. https://doi.org/10.1016/S0920-5861(01)00477-1

    Article  CAS  Google Scholar 

  54. Bi Y, Xu H, Li W, Goldbach A (2009) Water–gas shift reaction in a Pd membrane reactor over Pt/CeO.6ZrO.4O2 catalyst. Int J Hydrog Energy 34(7):2965–2971. https://doi.org/10.1016/j.ijhydene.2009.01.046

    Article  CAS  Google Scholar 

  55. Koryabkina NA, Phatak AA, Ruettinger WF, Farrauto RJ, Ribeiro FH (2003) Determination of kinetic parameters for the water–gas shift reaction on copper catalysts under realistic conditions for fuel cell applications. J Catal 217(1):233–239. https://doi.org/10.1016/S0021-9517(03)00050-2

    CAS  Google Scholar 

  56. Hokenek S, Kuhn JN (2012) Methanol decomposition over palladium particles supported on silica: role of particle size and CO-feeding on the catalytic properties. ACS Catal 2:1013–1019

    Article  CAS  Google Scholar 

  57. Qayyum E, Castillo VA, Warrington K, Barakat MA, Kuhn JN (2012) Methanol oxidation over silica-supported Pt and Ag nanoparticles: towards selective production of hydrogen and carbon dioxide. Catal Commun 28:128–133

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support from NASA through the Florida Space Grant Consortium, the Hinkley Center for Solid and Hazardous Waste Management, and the Graduate Students Success Fellowship (to NHE) that is administered by the USF School of Graduate Studies is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John N. Kuhn.

Ethics declarations

Conflict of interest

BJ and JNK co-invented U.S. patent number 9,328,035 on a related technology.

Electronic Supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 889 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsayed, N.H., Maiti, D., Joseph, B. et al. Precious Metal Doped Ni–Mg/Ceria–Zirconia Catalysts for Methane Conversion to Syngas by Low Temperature Bi-reforming. Catal Lett 148, 1003–1013 (2018). https://doi.org/10.1007/s10562-018-2310-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2310-y

Keywords

Navigation